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Abstract. With the aim of facilitating internal processes as well as search appli-
cations, patent offices categorize documents into taxonomies such as the Coop-
erative Patent Categorization. This task corresponds to a multi-label hierarchical
text classification problem. Recent approaches based on pre-trained neural lan-
guage models have shown promising performance by focusing on leaf-level label
prediction. Prior works using intrinsically hierarchical algorithms, which learn a
separate classifier for each node in the hierarchy, have also demonstrated their ef-
fectiveness despite being based on symbolic feature inventories. However, train-
ing one transformer-based classifier per node is computationally infeasible due
to memory constraints. In this work, we propose a Transformer-based Multi-task
Model (TMM) overcoming this limitation. Using a multi-task setup and sharing
a single underlying language model, we train one classifier per node. To the best
of our knowledge, our work constitutes the first approach to patent classifica-
tion combining transformers and hierarchical algorithms. We outperform several
non-neural and neural baselines on the WIPO-alpha dataset as well as on a new
dataset of 70k patents, which we publish along with this work. Our analysis re-
veals that our approach achieves much higher recall while keeping precision high.
Strong increases on macro-average scores demonstrate that our model also per-
forms much better for infrequent labels. An extended version of the model with
additional connections reflecting the label taxonomy results in a further increase
of recall especially at the lower levels of the hierarchy.

Keywords: patent classification · hierarchical classification · multi-label classi-
fication · neural modeling · multi-task learning.

1 Introduction

A patent is a legal text document describing an invention and granting its owner exclu-
sive rights for monetary exploitation thereof. Upon submission of a patent application,
patent offices assign one or several labels categorizing the described invention accord-
ing to a taxonomy such as the Cooperative Patent Classification (CPC). This scheme,
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Fig. 1: Excerpt of the hierarchical Cooperative Patent Classification (CPC) scheme.

developed jointly by the US Patent and Trademark Office (USPTO) and the European
Patent Office, organizes types of inventions in a hierarchical tree structure as illustrated
in Fig. 1. CPC information is used internally by the patent offices, e.g., for routing the
application to the respective experts. It is also released publicly with each patent in
order to facilitate search-related tasks including the retrieval and filtering of patents.

From a machine learning (ML) point of view, assigning CPC codes to patents con-
stitutes a hierarchical multi-label text classification problem and has high relevance to
a variety of information-retrieval (IR) related real-life tasks. First, with currently al-
most 2,000 patent applications being submitted per day to USPTO alone, the automatic
prediction of CPC codes helps to speed up manual work considerably. Second, patent
language often intentionally conceals the type of invention by avoiding terminology
commonly used in technical reports [28]. Detecting the underlying CPC codes present
in patents, scientific reports or other types of text-based queries will lead to more mean-
ingful rankings of patents during retrieval. Finally, the CPC taxonomy itself is under
constant development with new categories being added or parts being restructured. Ac-
curate automatic classification methods will help to keep patent databases up-to-date
with the taxonomy, a prerequisite for the above mentioned search applications.

At its top level, the CPC scheme has nine sections. Subclasses are further divided
into main groups and subgroups, amounting to a total of 250,000 categories. Patent
classification has been addressed by the IR and ML communities in the context of sev-
eral shared tasks organized by ALTA and CLEF-IP [27,30], operating at various gran-
ularities of the taxonomy. In this paper, following previous work [21,22], we address
the first three levels of the taxonomy, resulting in hierarchical multi-label classification
tasks with huge label inventories of around 600 classes in our datasets (Sec. 4).

We address this large-scale classification task using a novel combination of a pre-
trained language model [3,8] and a local hierarchical learning algorithm. Such algo-
rithms train one “local” classifier per node of the taxonomy predicting whether an in-
stance belongs to the respective category or not, and have been shown to be highly
effective for hierarchical patent classification in previous work using symbolic features
such as n-grams and part-of-speech tags [4,5]. Similarly, approaches based on contex-
tual word embeddings and transformers have shown promising performance [12,21,22].
They apply a flat strategy, i.e., they train a single classifier that simply predicts leaf-level
classes and infer ancestor classes from them. In this paper, we combine the advantages
of using powerful document embeddings generated by a pre-trained language model
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with the gains that can be achieved by localizing decisions. It is arguably computa-
tionally infeasible in most infrastructures to instantiate hundreds of transformer-based
language models in parallel. Therefore, we propose a new multi-task based neural ar-
chitecture for hierarchical multi-label classification in which the individual classifiers
corresponding to the nodes of the taxonomy constitute the classification heads in a
neural network, sharing the same underlying transformer-based language model. In ad-
dition, we create a variant adding connections between the classification heads that are
related in the label taxonomy.

We benchmark our approach with a variety of non-neural and neural hierarchical
text classification algorithms using the WIPO-alpha dataset and a new patent dataset
spanning the years 2006-2019. We publish the latter along with our paper. On both
datasets, our models strongly outperform prior work both in terms of macro- and micro-
averages. Our detailed analysis of performance at the different levels of the taxonomy
reveals that our models are much better (a) at predicting less frequent categories and (b)
at predicting finer-grained labels. Adding taxonomy-based connections to our model
results in further increases in recall especially for leaf-level labels.

Our contributions are as follows. (i) We propose a novel Transformer-based Multi-
task Model neural-network architecture and a variant adding hierarchical connections
(Sec. 3). We open-source our implementation in order to foster future research. (ii) We
sample a new dataset of 70k recent USPTO patents that we make publicly available for
benchmarking (Sec. 4).3 (iii) We perform an in-depth analysis demonstrating that our
models strongly outperform prior work, achieving much better accuracy on the lower
levels of the hierarchy as well as for less frequent CPC classes (Sec. 5).

2 Related Work

Despite having been studied in the data mining, ML, and IR communities for many
years [2], text classification remains a very active research field addressing a variety
of domains [15,23,37]. Since the seminal works using Convolutional Neural Networks
(CNNs) for sentence classification [16,18], neural modeling has become the predomi-
nant approach. In this work, we focus on hierarchical text classification [34], in which
the label set constitutes a hierarchy. While some architectures or algorithms directly re-
flect these taxonomies [4,5], others apply flat or global approaches either predicting
only leaf-level labels or simply treating all labels independently [14,21,22].

We here address the task of patent classification, which while constituting a hier-
archical multi-label text classification problem, is often addressed using flat classifiers
[11], though with several notable exceptions [4,5,36]. Patent documents are usually
represented by transforming the text of their title and abstract into a feature vector for
classification. Recent work uses the CPC scheme explained above, while some older
datasets use the International Patent Categorization (IPC), which is roughly speaking a
predecessor of CPC. In a recent shared task on patent classification [27], an approach
training separate SVM classifiers per node using simple n-gram and POS-tag based
features [5] performed comparably to a flat neural approach [12] based on the ULM-
FiT contextual language model [13]. The work of Li et al. [22], based on [18] and

3 https://github.com/boschresearch/hierarchical patent classification ecir2021.
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optimized by [1], proposes a convolutional neural network based on non-contextual
word2vec [26] embeddings predicting IPC codes on subclass level. In this work, we
compare to the state-of-the-art HARNN system [14] (see Sec. 5.3). HARNN generates
document embeddings with a BiLSTM initialized using word2vec, feeds these through
a hierarchical attention-based memory unit that learns different attention weights per
category, and finally predicts categories by combining hidden local and global infor-
mation. The former relates to level-wise predictions and the latter consists of predic-
tions for the entire taxonomy. Further, neural work on patent classification [35] employs
graph-convolutional networks using word embeddings inferred from a word-document
co-occurrence graph. Hierarchical patent classification has also been addressed as a
sequence generation problem using an attention-based neural network model [32].

Outside the context of patent classification, [40] uses a very similar approach to [35];
[20] and [38] address neural hierarchical text classification by training level-wise
classifiers and chaining predictions top-down. Similar to our work, [29] propose a CNN
model in which the hierarchy of labels is leveraged by regularizing the deep architec-
ture with dependencies among labels. A weakly-supervised hierarchical classification
approach is suggested in [24]. Given a few user-provided seeds, the system generates
pseudo-documents that are used for bootstrapping a neural hierarchical classifier in-
cluding an LSTM-based language model.

Recently, transformer-based neural language models such as BERT [8] have been
shown to be highly effective for a variety of natural language processing tasks [33],
following a “pre-train and fine-tune” approach. In the context of patent classification,
PatentBERT [21] adds a single hidden layer on top of BERT, mapping the CLS embed-
ding to a sigmoid output in order to predict CPC labels on subclass level. [17] employs
the same idea, predicting relevance with regard to a pre-specified topic.

Our work differs from previous work in the area of hierarchical patent classification
in the following aspects. First, instead of predicting labels at a single hierarchical level
[1,5,21,22], we model predictions across the label taxonomy. Second, unlike the flat
classification [21,22] model architectures, we make use of the taxonomy by transferring
information from the parent label to child labels. Finally, to the best of our knowledge,
our approach is the first to combine powerful transformer-based language models with
an intrinsically hierarchical algorithm for patent classification.

3 Model Architecture

3.1 Overview

We propose a neural hierarchical classification architecture as illustrated in Fig. 2. We
assume the label set L = {l1, l2, l3, ..., ln} in which labels are arranged hierarchically.
The task consists in assigning a subset of L to each input document. For each predicted
label, the respective ancestors should also be contained in the output set.

We create distributed representations of the textual input using a pre-trained trans-
former-based neural language model. For each label in the label set, we train a binary
classifier that decides whether an instance belongs to the respective category or not.
The ensemble of classifiers is trained in a multi-task setup and makes use of a single
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Fig. 2: Architecture of our THMM model for our running example from Fig. 1. The
TMM version is the same but without the dashed connections between classification
heads. Each classification head consists of three dense layers and predicts whether an
instance belongs to the respective category or not.

underlying SciBERT neural language model [3] for creating document representations.
SciBERT has been trained on a corpus of scientific publications and is hence closer
to the patent domain than the standard BERT model [8]. In the terminology of multi-
task learning, each of these classification heads addresses one task. Hence, each label-
specific binary classifier constitutes a classification head in our multi-task based neu-
ral network architecture. In other words, our Transformer-based Multi-task Model
(TMM) consists of a single transformer model with n heads where n corresponds to the
number of labels in the hierarchy. Parameters of the transformer model (and of optional
CNN layers) are shared in a hard way. In addition, each classification head has its own
set of parameters. Further, to analyze the impact of sharing information between hier-
archically related tasks, we propose an extended architecture which adds links between
the network components corresponding to nodes that are linked in the hierarchy. We
call this latter model Transformer-based Hierarchical Multi-task Model (THMM).

3.2 Transformer-Based Language Model Based Document Representation

Similar to prior work on neural patent classification [14,21,22], we use the patent’s title
and abstract as input to our model. We concatenate them, word-piece tokenize the text
and prepend the special CLS token. We leverage the transformer’s output embeddings
for the two variants of our model in the following ways: (i) We use the embedding
generated for the CLS token (left-hand side path in Fig. 2), which can be regarded
as capturing the semantics of the entire input text sequence [8]. However, the CLS
token has been designed for next sentence prediction and it is unclear how effective
its embedding is for representing long sequences as in our case. Hence, we also test a
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second option that explicitly considers the entire sequence: (ii) We compute a document
embedding from the embeddings generated for each word-piece token by feeding them
into a CNN (right/dotted path in Fig. 2). For details on the latter, see Sec. 5.2.

3.3 Classification Heads

We next detail the architecture of the classification heads. For the Transformer-based
Multi-task Model (TMM), we create an independent head for each label. The input for
each head is the document embedding x corresponding to the embedding of the CLS
token or the CNN’s output. Each head consists of two dense layers, both with ReLU
activation, followed by a two-dimensional dense output layer producing logits. Finally,
we perform classification by means of a softmax operation.

In the Transformer-based Hierarchical Multi-task Model (THMM), we add con-
nections between the classification heads as specified by the label taxonomy. As in the
TMM, each classification head computes the logits for the binary decision using two
fully connected dense layers. However, in this case (see Equation (1)), the first hid-
den layer of the classification head for li additionally takes into account h2lj , an output
from the second (intermediate) dense layer of the head corresponding to li’s parent lj .
It computes a hidden representation h1li by performing a linear transformation on the
concatenation (⊕) of the sequence embedding x and h2lj . If li does not have a parent
in the taxonomy, the input to its classification head is simply x. The parent(li, lj) re-
lation evaluates to true if lj is the parent of li, and to false otherwise. φ is the ReLU
activation function.

h1li =

{
φ(W 1

li
(h2lj ⊕ x) + b1li) if there is a lj with parent(li, lj) = true

φ(W 1
li
x+ b1li) if parent(li, ROOT )

(1)

h2li = φ(W 2
li(h

1
li) + b2li) h3li = φ(W 3

li(h
2
li) + b3li) (2)

As in TMM, the hidden representation h1li is passed through two further dense layers
(Equation (2)) and mapped to a two-dimensional logit vector h3li . This serves as input to
a softmax layer that performs the prediction whether label li applies to the instance. For
training our models, we use binary cross entropy loss and weight all “tasks” equally.

4 Patent Classification Datasets

In this section, we give details on the two datasets we use for our experiments. To ensure
comparability with prior work, we use WIPO-alpha, which contains 75k patents from
1998-2001 annotated with the IPC scheme. As domains, writing style and terminology
of patents evolve over time, we also experiment with more recent data. We create a new
dataset of 70k USPTO patents spanning the years 2006-2019, using the more recent
CPC scheme. We release this dataset to ensure reproducibility of our study.
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4.1 USPTO Dataset

We sample a dataset of 70k patents from the USPTO patents data dump4 as follows.
With the aim of creating a realistic setup in which models predict labels for newer
patents based on older data, similarly to [9], we split the dataset temporally, assigning
the documents from years 2006-2017 to the training set, 2018 to dev and 2019 to test.
Our training sample contains 50k patents, and the dev and test sets 10k each.

We address label sparsity by up-sampling the least frequent labels by adding patents
carrying the infrequent label such that each label occurs at least 10 times in the training
set. Dev and test distributions are not changed. Fig. 3b shows that for some labels, there
are many instances, but the distribution has a long tail. As shown in Figure 3a, the total
number of labels at leaf node, i.e., subclass, level is 630 for train, 575 in dev, and 573
for test. There is one label occurring in dev that does not have any associated training
instances. In the test split, there are 7 such labels. The average number of labels per
patent is around 1.5 on the first level of the hierarchy and up to 2.32 on the leaf level,
with the latter increasing from 1.8 in 2014 to 2.3 in 2019. This reflects a tendency
towards more interdisciplinary inventions and further demonstrates the need to take the
temporal dimension into account when training and evaluating models.

4.2 WIPO-alpha

The WIPO-alpha dataset5 contains about 46k training instances and 29k test instances.
The patent documents were published between 1998 and 2002, with test instances sam-
pled randomly.6 There are 602 labels in train and 576 test labels at subclass level. As
there is no pre-existing split, we sample a validation (dev) set from train by selecting
20% of the data points at random. There are 22 labels with instances in test but without
examples in the training data at subclass level. The IPC code in the dataset is defined
using the seventh edition of IPC which labels each patent with a main IPC code and a
set of secondary IPC codes. Unlike prior work [1], which considers only the main IPC
code and benchmarks the models in a single-label flat classification setting, we consider
all IPC codes in a hierarchical multi-label classification setting.

5 Experiments

In this section, we first describe our experimental setup including evaluation metrics,
baselines and implementation details. We then discuss our experimental results in detail.

5.1 Evaluation Metrics

For evaluating our models, we use hierarchical precision, recall and F1-score as pro-
posed by [19] and defined as hP =

∑
|Pi∩Ti|∑

Pi
and hR =

∑
|Pi∩Ti|∑

Ti
. For each test

instance i, the set Pi consists of all predicted labels and their respective ancestors. Ti
4 https://www.patentsview.org/download
5 https://www.wipo.int/classifications/ipc/en/ITsupport/Categorization/dataset/
6 See WIPO-alpha readme and personal correspondence with authors.

https://www.patentsview.org/download
https://www.wipo.int/classifications/ipc/en/ITsupport/Categorization/dataset/
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splits total labels average labels
per patent

level 1 2 3 1 2 3
USPTO train 9 128 630 1.49 1.69 1.98

dev 9 126 575 1.56 1.84 2.25
test 9 127 573 1.56 1.89 2.32

WIPO train 8 123 602 1.22 1.34 1.49
dev 8 120 544 1.22 1.35 1.49
test 8 128 576 1.22 1.35 1.51

(a)

0 200 400 600
rank

2k
4k
6k
8k

10k

nu
m

be
r o

f i
ns

ta
nc

es

(b)

0 200 400
word-piece count

5k

10k

15k

(c)

Fig. 3: Corpus statistics of USPTO and WIPO-alpha datasets. (a) Label counts by level.
(b) Label count distribution for USPTO. (c) Instance length distribution for USPTO.

contains all true labels including ancestors. For all results and analyses reported in this
section, we modify the set of predicted labels to include relevant ancestors.

Prior work [14] has focused on evaluating per-instance (micro) scores. As the dis-
tribution of instances per label is highly skewed (see Fig. 3b), we additionally report
macro-scores that average across scores obtained per label. We compute macro-F1 as
the average over the macro-F1 scores per label. Unless otherwise stated, we consider a
model to predict a label if the softmax score for the dimension “label applies” is at least
0.5. In addition, in line with previous work [14,38], we evaluate the predictions as a
ranking task, which does not require defining a threshold. We compute the Area Under
the Precision-Recall Curve (AUPRC) [7] as implemented in scikit-learn.7 In the case
of models outputting only leaf-level scores, we here use the maximum of the leaf-level
scores for each intermediate-level label.

5.2 Implementation and Hyperparameter Settings

We implement our models in Python using TensorFlow 2.08 and Keras [6]. We use
the HuggingFace Transformers library [39] for integrating SciBERT [3]. For efficiency
reasons, we truncate the word-piece tokenized input sequences to a maximum length of
256. As illustrated in Fig. 3c, this covers the complete input text for almost all instances
in USPTO (and also for WIPO-alpha, not shown).

We found the following hyperparameters to work best across our two benchmark
datasets for our proposed TMM/THMM models. All dense layers have a hidden size
of 256 and use ReLU activations. For training, we apply a learning rate of 10−5, a
dropout of 0.25 across layers, and a batch size of 64. In the case of the CNN model
variant, we compute a single-vector document representation using a CNN whose ar-
chitecture largely follows [22]. For each word-piece token, we compute an embedding
by summing up the corresponding weights of the last four SciBERT layers. Then, we
concatenate the embeddings of all word-piece tokens and apply convolution operations

7 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average precision score.
html

8 https://www.tensorflow.org

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://www.tensorflow.org
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with kernel sizes {2, 3, 4, 5}. In contrast to [22], we add an extra kernel of size 2 to
capture bigrams and we use a filter size of 256 instead of 512. The training of a single
model takes approximately 300 hours on a Nvidia Tesla V100 GPU with 80GB VRAM.

5.3 Baselines

We compare our models to a wide range of non-neural and neural models. First, the
TwistBytes system [4] constitutes a competitive non-neural baseline. We run a recently
updated version9 leveraging a TF-IDF vector of uni-gram features. The system is im-
plemented using scikit-learn10 and learns one support vector classifier [31] per node.
During prediction, the model only tests for presence of labels if the respective parent’s
score is positive. Finally, the set of predicted labels is filtered using a threshold of -0.25.

HARNN. In order to compare to a recent state-of-the-art neural model for hierar-
chical patent classification, we run the Hierarchical Attention-based Recurrent Neural
Network [14] on our datasets. We keep hyperparameter settings as proposed, repre-
senting each document using a 100-dimensional Word2Vec [25] model trained on train
and dev, using 256 and 512 as the hidden sizes in the BiLSTM and for each fully
connected layer, respectively. Local and global information are combined with a regu-
lation parameter α with a value of 0.5. For a fair comparison with the other models, we
tune the prediction threshold for macro-performance, resulting in 0.15 for both datasets.
HARNN-orig [14] uses a prediction threshold of 0.5.

flat-*. In addition, we provide results for simplified versions of our own model,
predicting only labels for the leaf level and inferring ancestors during post-processing.
First, flat-CNN corresponds to DeepPatent [22], which uses a CNN with kernels of
sizes {3, 4, 5} and 512 filters on top of SciBERT. The outputs of all CNN layers are
flattened and concatenated, resulting in a 1,536-dimensional document embedding. Sec-
ond, flat-CLS is based on PatentBERT [21], using SciBERT’s 786-dimensional CLS
embedding directly as document embedding. The feature vectors of flat-CNN and flat-
CLS are subsequently fed into a multi-layer perceptron with two dense layers, applying
sigmoid activation to each logit. For both models, dense layers have size 512, the learn-
ing rate is set to 10−5, dropout rate is 0.25 and batch size is 64.

5.4 Experimental Results

We now analyze the performance of our models and compare them to prior work. We
find similar tendencies on the two datasets and show that our models perform better
especially at deeper levels of the hierarchy and for less frequent labels.

Classification Performance. Table 1 and Table 2 show results obtained for the USPTO
and WIPO-alpha datasets, respectively. Based on these, we can draw the following con-
clusions. First, neural models generally perform better than the non-neural TwistBytes
system, with SciBERT-based models outperforming HARNN. Our models achieve much

9 https://dublin.zhaw.ch/∼benf/HPC
10 https://github.com/globality-corp/sklearn-hierarchical-classification

https://dublin.zhaw.ch/~benf/HPC
https://github.com/globality-corp/sklearn-hierarchical-classification
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Table 1: Hierarchical classification results on USPTO test set.
macro-avg. micro-avg. AUPRC

Model hP hR hF1 hP hR hF1
TwistBytes [4] 0.423 0.203 0.257 0.651 0.534 0.587 0.407
HARNN-orig [14] 0.355 0.126 0.170 0.781 0.481 0.595 0.661
HARNN [14] 0.292 0.281 0.267 0.519 0.679 0.588 0.661
flat-CNN [22] 0.486 0.272 0.330 0.718 0.552 0.624 0.645
TMM-CNN 0.412 0.360 0.366 0.639 0.636 0.637 0.667
THMM-CNN 0.412 0.364 0.369 0.649 0.634 0.641 0.669
flat-CLS [21] 0.481 0.256 0.316 0.740 0.546 0.628 0.644
TMM-CLS 0.485 0.313 0.362 0.709 0.611 0.656 0.678
THMM-CLS 0.426 0.367 0.377 0.666 0.633 0.649 0.670

higher recall while keeping precision high. When tuning HARNN for hF1 as in the orig-
inal work, a high micro-hP can be achieved but at the cost of lower recall especially in
the macro evaluation.11 This implies that the original model focuses on the easy cases of
highly frequent labels. Tuning HARNN for macro-scores changes the precision-recall
tradeoff in the micro-setting and improves macro-F1, but still not approaching the per-
formance of transformer-based models.

With the exception of macro-hP of flat-CNN on USPTO, the CLS-based models all
outperform their CNN-based counterparts. However, the CLS-based models achieve the
best results in terms of micro- and macro-F1 on both datasets. We conclude that there
is no extra need for aggregating information across the sequence using a CNN layer.
In most cases, adding hierarchical links between classification heads in TMM increases
recall at the expense of precision. When comparing THMM-CLS with TMM-CLS on
both datasets, the former does better in terms of macro-F1, while the latter has slightly
higher micro-F1, i.e., adding the links helps especially for less frequent labels.

Finally, the flat strategy leads to good precision but is not competitive in terms of
recall, illustrating that such models struggle with activating all relevant classifications
to the required extent. The AUPRC scores also indicate that the TMM-CLS model per-
forms best overall in terms of producing correct rankings of all labels for each patent,
closely followed by THMM-CLS. Hence, our experiments confirm that when optimiz-
ing for a good trade-off between micro- and macro-average performance, hierarchical
multi-label classification for patents is best approached using a fully hierarchical model.

Performance Across Levels. Fig. 4 shows an increase in macro-F1 for TMM and
THMM compared to the baselines, resulting primarily from higher recall (not shown).
Adding hierarchical links (THMM vs. TMM) results in better predictions mainly at
level 3. Hence, the overall increase in F1 is a result of improved classification at the
lower levels, and finer-grained labels benefit from passing on hierarchical information.

11 We double-checked the surprisingly low macro-scores of HARNN-orig and decided to present
results of HARNN tuned for macro-performance as well.
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Table 2: Hierarchical classification results on WIPO-alpha test set.
macro-avg. micro-avg. AUPRC

Model hP hR hF1 hP hR hF1
TwistBytes [4] 0.456 0.264 0.308 0.626 0.570 0.597 0.412
HARNN-orig [14] 0.089 0.021 0.027 0.757 0.248 0.373 0.505
HARNN [14] 0.206 0.269 0.206 0.373 0.652 0.474 0.505
flat-CNN [22] 0.466 0.348 0.382 0.707 0.578 0.636 0.641
TMM-CNN 0.408 0.400 0.389 0.636 0.684 0.659 0.681
THMM-CNN 0.377 0.413 0.380 0.620 0.686 0.651 0.674
flat-CLS [21] 0.503 0.328 0.377 0.737 0.598 0.660 0.674
TMM-CLS 0.462 0.376 0.399 0.682 0.679 0.680 0.697
THMM-CLS 0.409 0.424 0.405 0.651 0.698 0.674 0.690

Table 3: Analysis of coverage for USPTO dataset. No Prediction: number of test
instances with no predicted labels at a given level. False Positives (error analysis):
average # hops between false positives and nearest true labels at third level.

Avg. Labels Predicted No Prediction False Positives
level 1 2 3 1 2 3 # inst. hops
gold 1.56 1.89 2.32 0 0 0 0.0 0.0
TwistBytes [4] 1.65 1.51 1.56 147 891 1,575 3,788 4.17±1.77
HARNN-orig [14] 1.36 1.17 1.02 116 1,134 2,466 2,341 4.08±1.79
HARNN [14] 2.29 2.62 2.82 0 12 148 6,380 4.12±1.79
flat-CNN [22] 1.31 1.45 1.67 512 512 512 4,198 4.38±1.69
TMM-CNN 1.75 1.98 2.01 1 42 228 5,236 4.22±1.69
THMM-CNN 1.68 1.92 2.04 5 55 232 5,282 4.17±1.69
flat-CLS [21] 1.26 1.39 1.61 570 570 570 3,916 4.28±1.72
TMM-CLS 1.59 1.68 1.71 13 125 476 4,114 4.19±1.72
THMM-CLS 1.61 1.84 2.03 8 66 204 5,046 4.22±1.68

Coverage. The number of labels at the subclass (leaf) level varies strongly across in-
stances from a single category to 20 or more, with a tendency of more recent patents
having more labels. Hence, one difficulty of the task consists in outputting the right
number of categories per instance [10]. Table 3 breaks down the average number of
labels predicted by level of the hierarchy for USPTO (WIPO-alpha shows similar ten-
dencies). At the top level of the hierarchy, all other models predict a roughly fitting
number of labels. However, at levels 2 and 3, TwistBytes and the flat models predict
markedly fewer labels. This effect is alleviated by the TMM and THMM models. While
HARNN-orig strongly under-predicts the number of labels, our version of HARNN op-
timized for macro-F1 over-predicts, indicating that tuning the model either way is prob-
lematic. Next, we report the number of test instances for which a model did not make
any prediction at a particular level (“No Prediction” in Table 3). This count is much
lower for the TMM and THMM models, showing that the hierarchical models often
can make predictions at intermediate levels even if the fine-grained class is unclear.
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Fig. 4: Classification performance: macro-avg. F1 by level of hierarchy.

Error Analysis. Finally, we capture the models’ mis-classification behavior by com-
puting the number of hops in the label taxonomy to the nearest gold label on the same
level. For example, if a model incorrectly predicts B41F and A43C with the true label
being A43B, the wrong predictions are 6 hops and 2 hops away from the true label, re-
spectively. Table 3 shows the average number of hops between false positives and gold
labels on level 3. The column titled # inst. denotes the number of test instances having
at least one false positive label. In general, the wrong predictions of all models seem
to be similarly far from the nearest gold label, usually within the correct section of the
taxonomy. Again, the flat approach more often activates completely wrong labels.

Summary. Our experiments on two patent datasets have shown that our models based
on pre-trained transformers strongly outperform both neural and non-neural prior work
in terms of micro- and macro-scores. Recall increased considerably while keeping pre-
cision high. The coverage of our models is much better than the one of prior work;
wrongly activated predictions usually are within the correct section of the taxonomy.

6 Conclusion and Outlook

In this work, we have proposed a novel Transformer-based Multi-task Model (TMM)
for hierarchical patent classification. The strength of our architecture stems from in-
tegrating the highly effective local-classifier-per-node idea from traditional hierarchi-
cal classification algorithms with a large-scale pre-trained neural transformer language
model, which is made computationally feasible by our novel multi-task based architec-
ture. We have shown that this model architecture strongly outperforms previous work
on hierarchical text classification, with a higher coverage of instances and addressing
the long tail of less frequent labels more successfully.

Future Work. Further improvements for patent classification can be expected from inte-
grating additional textual information, e.g., the description or claims sections, for com-
puting the document embedding. In this work, we have focused on patents. Yet, our
model should be easily adaptable to other genres and domains, e.g., by substituting
the pre-trained language model with in-domain data. Improving the confidence estima-
tion for classification decisions further may lead to more precise label activation while
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keeping recall high. Finally, as our model has the very practical application of patent
categorization, improving the model in an active learning set-up may be a very promis-
ing direction.
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10. Fall, C.J., Törcsvári, A., Benzineb, K., Karetka, G.: Automated Categorization in the Inter-
national Patent Classification. SIGIR Forum 37(1), 1025 (2003)

11. Gomez, J.C., Moens, M.F.: A Survey of Automated Hierarchical Classification of Patents.
In: Paltoglou, G., Loizides, F., Hansen, P. (eds.) Professional Search in the Modern World:
COST Action IC1002 on Multilingual and Multifaceted Interactive Information Access, pp.
215–249. Springer International Publishing (2014)

12. Hepburn, J.: Universal Language Model Fine-tuning for Patent Classification. In: Proceed-
ings of the Australasian Language Technology Association Workshop 2018. pp. 93–96.
Dunedin, New Zealand (2018)

https://github.com/fchollet/keras


14 Pujari et al.

13. Howard, J., Ruder, S.: Universal Language Model Fine-tuning for Text Classification. In:
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). pp. 328–339. Association for Computational Linguistics, Mel-
bourne, Australia (2018)

14. Huang, W., Chen, E., Liu, Q., Chen, Y., Huang, Z., Liu, Y., Zhao, Z., Zhang, D., Wang, S.: Hi-
erarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach.
In: Proceedings of the 28th ACM International Conference on Information and Knowledge
Management. pp. 1051–1060 (2019)

15. Jalan, R., Gupta, M., Varma, V.: Medical Forum Question Classification Using Deep Learn-
ing. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) Advances in Information
Retrieval. pp. 45–58. Springer International Publishing (2018)

16. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A Convolutional Neural Network for Mod-
elling Sentences. In: Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics (ACL’14). pp. 655–665. Baltimore, MD, USA (2014)

17. Kang, D.M., Lee, C.C., Lee, S., Lee, W.: Patent Prior Art Search Using Deep Learning Lan-
guage Model. In: Proceedings of the 24th Symposium on International Database Engineering
& Applications. IDEAS ’20, Association for Computing Machinery, New York, NY, USA
(2020)

18. Kim, Y.: Convolutional Neural Networks for Sentence Classification. In: Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). pp.
1746–1751. Association for Computational Linguistics, Doha, Qatar (2014)

19. Kiritchenko, S., Matwin, S., Famili, A.F.: Functional annotation of genes using hierarchical
text categorization. In: Proceedings of BioLINK SIG: Linking Literature, Information and
Knowledge for Biology (2005)

20. Kowsari, K., Brown, D.E., Heidarysafa, M., Meimandi, K.J., Gerber, M.S., Barnes, L.E.:
Hdltex: Hierarchical deep learning for text classification. In: 2017 16th IEEE International
Conference on Machine Learning and Applications (ICMLA). pp. 364–371. IEEE (2017)

21. Lee, J.S., Hsiang, J.: PatentBERT: Patent classification with fine-tuning a pre-trained BERT
model. World Patent Information 61(101965) (2020)

22. Li, S., Hu, J., Cui, Y., Hu, J.: DeepPatent: patent classification with convolutional neural
networks and word embedding. Scientometrics 117(2), 721–744 (2018)

23. Lu, Z., Du, P., Nie, J.Y.: VGCN-BERT: Augmenting BERT with Graph Embedding for Text
Classification. In: Jose, J.M., Yilmaz, E., Magalhães, J., Castells, P., Ferro, N., Silva, M.J.,
Martins, F. (eds.) Advances in Information Retrieval. pp. 369–382. Springer (2020)

24. Meng, Y., Shen, J., Zhang, C., Han, J.: Weakly-supervised hierarchical text classification.
In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 6826–6833
(2019)

25. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations
in Vector Space. In: Bengio, Y., LeCun, Y. (eds.) 1st International Conference on Learning
Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track
Proceedings (2013)

26. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: Advances in Neural Information Process-
ing Systems. pp. 3111–3119 (2013)
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