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Abstract

Negation resolution refers to the task of detecting negation in text, as well as

the specific spans of text which are negated. Past work has mostly modeled

it as a sequence tagging task; however, recently the idea of modeling it as de-

pendency parsing has been explored. In this thesis, we look at different ways

to encode negation data as dependency graphs. We make use of a previously

suggested encoding by Kurtz et al. (2020) and propose four novel encod-

ing schemes. We apply a transformer-based dependency parser to the data

and analyze the effects of its performance on the task. We test the five data

encodings and find that the nested encoding performs best in most cases.

We use a sequence-tagging baseline in contrast to our approach and show

that our system with the use of an embedding model fine-tuned for syntactic

dependency parsing outperforms the baseline on in-domain experiments. In

order to provide fair comparison with the baseline, we create an evalution

script covering a wide range of existing metrics used for negation detection

by different works.
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1 Introduction

Negation resolution is a task focusing on detecting negation instances in

text. It is applicable in various natural language processing tasks, for ex-

ample, information extraction, especially in the biomedical domain (Szarvas

et al., 2008; Mehrabi et al., 2015) where the factuality and reliability of

information is essential. It can be useful for sentiment analysis (Wiegand

et al., 2010; Moore and Barnes, 2021) as negation cues can alter the mean-

ing of a given statement and hence indicate a different emotion from that

of a non-negated statement. Another area of application is machine transla-

tion (Fancellu and Webber, 2015; Bentivogli et al., 2016), where the correct

identification of the negated part of the sentence is important for its correct

translation.

Negation detection includes recognizing a negation signal, or a cue, and

identifying the part of the text that is affected by that cue (its scope). The

task may also include negated event resolution. The approaches to solv-

ing the task in question range from rule-based to different machine- and

deep-learning-based ones. While many systems achieve good results in cue

detection, scope resolution has proven to be a more difficult task. Another

challenge of the task is divergence in the annotation guidelines of different

datasets, which makes it harder to generalize over domains. Furthermore,

the existence of a great number of evaluation metrics without universally

accepted ones makes the task even more complicated. With different works

using different metrics to evaluate their systems, it is also a challenge to

compare different systems.

The boundaries of the scope affected by the cue are syntactically grounded,

which led to many negation resolution systems incorporating syntactic depen-

dency information. Many rule-based approaches to negation resolution rely

on dependency parsing (Sanchez Graillet and Poesio, 2007; Sohn et al., 2012;

Mehrabi et al., 2015). Moreover, machine learning systems for negation de-

tection often employ syntactic information as additional features (Read et al.,
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2012; Lapponi et al., 2012; Cruz Diaz et al., 2015). However, there are few

research works focusing on applying a dependency-parsing based approach

directly. Thus, our interest lies in finding a solution by means of dependency

parsing algorithms. In their recent work on negation resolution, Kurtz et al.

(2020) apply a parsing model to negation data which achieves state-of-the-art

results. Following their idea, in this thesis we further explore the capabilities

of dependency parsing methods and examine their impact on the negation

detection task by framing them as dependency parsing. The essence of the

approach is reformulating the task as a set of binary relations within a sen-

tence, or, in other words, shaping the given data into dependency trees. We

experiment with different ways of encoding the data in such a way by repli-

cating the representation created by Kurtz et al. (2020) and developing four

mappings ourselves. The categorization of the relations is adapted to the

task by using cue, scope and event as the labels, as opposed to using the

grammatical categories of the original task. We apply the parser to different

dependency-like representations of the same data and study the performance

systematically using a graph-based dependency parser employing pre-trained

transformer-based language models (Grünewald et al., 2021) as our main tool.

We compare the results for different representations, demonstrating that the

nested tree representation performs best in most cases, with the direct cue-

to-scope representation coming in as the second best. We implement our own

evaluation script in order to cover a range of metrics used in different works,

thereby making a fair comparison of different systems possible. We compare

a sequence-tagging based baseline to our models and show that the use of a

dependency parsing in combination with an embedding model fine-tuned on

syntax outperforms the baseline.

The thesis is structured as follows. Section 2 reports the prior research

relevant for the topic. Section 3 describes the datasets used in this work.

Section 4 provides the details on the applied parser and the data represen-

tations. Section 5 describes the performed experiments, the settings of the

experiments and their results. Section 6 provides an analysis of the results
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with respect to the settings that they were obtained in, as well as an outlook.

Section 7 concludes the thesis.
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2 Related Work

In this section, we provide background information with regard to the nega-

tion resolution, as well as provide an overview of the work related to the

negation resolution, different approaches to the task, and the systems that

we used as our baseline.

2.1 Background

Negation is a linguistic device that is used to reverse the meaning of a

sentence or a part of a sentence, or to convey the falseness of information.

A negation instance is comprised of a cue, which is a “word that expresses

negation” (e.g. no, not, without etc.), and its scope, which is “the part of a

sentence that is affected by the negation cues” (Morante and Blanco, 2012;

p. 268). Some negation datasets also include an event that is negated by the

cue. Morante and Blanco (2012) define event as “the main event or property

actually negated by the negation cue” (see an example in Figure 1).

... I noted that there were no other footsteps ...

Scope Scope Cue Scope Event

Figure 1: Example of a negation instance (taken from ConanDoyle-neg).

A cue can be expressed in a variety of ways. It can appear in a form of

a negation word (e.g. never) or a series of words (e.g. by no means), or it

can be a negation affix (e.g. infrequent). Negation can be expressed in far

less obvious ways, e.g. with the help of some polysemic verbs such as fail

or avoid. Such cases pose an additional challenge as these are not precise

negation signals and may refer to an action rather than negation (cf. I failed

to leave the room. vs. I failed the exam.) Another rexample of a false negation

cue would be such phrases as no doubt (e.g. He is no doubt a genius.), not

only, no wonder etc. (Carrillo de Albornoz et al., 2012; p. 284)
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The cat meowed .

ROOT

nsubj
det punct

Figure 2: Example of a syntactically parsed sentence.

det = determiner, nsubj = nominal subject, punct = punctuation.

Dependency parsing aims at structuring a sentence by representing

the (syntactic) relations of its words in the form of a tree or a graph. Defin-

ing dependency, Nivre (2005) (p.3) states that “the syntactic structure of

a sentence consists of binary asymmetrical relations between the words of

the sentence”, i.e. hierarchical relationships between pairs of words or tokens

which are assigned the roles of a head and a dependent. The relations are

also categorized in accordance with their grammatical function, including

such categories as subject, direct or indirect object and others (Jurafsky and

Martin, 2020; p. 281-282). For example, in Figure 2 the head verb meowed

governs the dependent noun cat, with the role of the dependent in relation

to its head being nominal subject (nsubj). One of the approaches to depen-

dency parsing is graph-based parsing, the main idea of which is to “search

through the space of possible trees for a given sentence for a tree (or trees)

that maximize some score” using techniques from the graph theory (Jurafsky

and Martin, 2020; p. 296).

2.2 Previous Approaches

Early work on negation resolution mainly focused on various rule-based sys-

tems. One of the first negation detection systems, NegEx (Chapman et al.,

2001), relies solely on domain-specific regular expressions and lexical cues to

solve the task. However, given that the negation scope boundaries are re-

lated to the syntactic structure of the sentence it is found in, a number of

works use syntactic information when defining the rules for their systems.
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Sanchez Graillet and Poesio (2007) extract scopes via a pattern recognition

system using lexical information and syntactic dependency parses. Sohn et al.

(2012) develop a set of dependency-parsing based rules and single out syn-

tactic patterns typical for negated constractions. They note that the use of

the syntactic approach helps to capture the scope when it is located far away

from the cue in the sentence, as it is not restricted by the word distance in

contrast to a raw regular-expression approach (Sohn et al., 2012; p. 7). Car-

rillo de Albornoz et al. (2012), participants of the *SEM 2012 Shared Task

on cue detection and scope resolution (Morante and Blanco, 2012), make

use of syntax trees, or constituency trees, to determine the scope boundaries.

Rule-based systems are used in later years as well. Mehrabi et al. (2015) build

upon the output of NegEx by further filtering out false predictions using syn-

tactic dependency information obtained from Standford Dependency Parser.

NegBio (Peng et al., 2017) uses dependencies as well to establish patterns

typical for negation.

Rokach et al. (2008) transform the rule-based regular expression approach

into a machine learning problem, using a tree classifier to automatically learn

regular expression patterns. Morante and Daelemans (2009) combine rule-

based and machine-learning based methods for the cue detection. First, they

look for unambiguous cues using a list of negation signals extracted from

the training corpus, such us no, not, abscence etc. (Morante and Daelemans,

2009; p. 24) Next, they apply a memory-based classifier to label the to-

kens that were not selected in the pre-processing step. For the scope resolu-

tion, they use a combination of three classifiers: a memory-based classifier,

a Support-Vector Machine (SVM) and Conditional Random Fields (CRFs).

Councill et al. (2010) utilize a CRF classifier by feeding various syntactic

dependency information as features for the scope detection. Cruz Diaz et al.

(2015) apply an SVM classifier based on a Radial Basis Function (RBF)

kernel for the negation resolution using Beginning-Inside-Outside (BIO) en-

coding. They avoid incorrect predictions as the majority class with the help

of Cost-Sensitive Learning (CSL). They note that syntactic features seem
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redundant for the cue detection (Cruz Diaz et al., 2015; p. 17); however,

they use the syntactic information in the scope detection phase and show

improvement over systems without the incorporation of syntax.

Li et al. (2010) introduce the idea of framing negation resolution as a

shallow semantic parsing problem. They map the negation information onto

semantic constituency trees and use a pruning algorithm to remove the con-

stituents that are least likely to refer to negation. They then apply an SVM

classifier to predict the negation scope, and process the results further to deal

with discontinuous predictions.

Many of the participants of the *SEM 2012 Shared Task on negation

detection turn to machine-learning approaches, incorporating syntactic fea-

tures as well. Read et al. (2012) apply an SVM classifier for cue detection and

scope resolution. Fot the latter, they make use of the syntactic constituents

provided in the dataset used in the Shared Task and apply an SVM-based

ranking of the consitituents. The system achieves the best global score and

event score in the task. Lapponi et al. (2012) use an SVM classifier for cue

detection and a CRF sequence tagger with syntactic dependency information

as features for scope and event resolution. They use Stanford Dependency

Parser and Maltparser for the two versions of the classifier. The system per-

forms best for the scope resolution (the best scopes with no cue match metric;

see Section 5.1 for a detailed description of the metrics). While White (2012)

use a rule-based system for cue detection, they apply a CRF sequence label-

ing system for scope and event resolution. They use the provided syntax tree

information, among other features.

The current state of the art systems are mainly based on neural networks.

Fancellu et al. (2016) compare a Feedforward Neural Network (FNN) and

a Bidirectional Long Short-Term Memory (BiLSTM) for scope resolution.

They experiment with different settings, namely adding cue information, pre-

trained embeddings and Part-of-Speech (POS) tag information. They show

that a BiLSTM model with a combination of the three aforementioned fea-

tures yields the highest scores. They note that the CRF-based system used
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by White (2012) performs better at exact scope matching, as they make use

of the syntax trees which are helpful for detecting scope boundaries (Fancellu

et al., 2016; p. 502). Fancellu et al. (2018) build on their BiLSTM model and

create a cross-lingual negation resolution system by using universal depen-

dencies as their input to the model. McKenna and Steedman (2020) adjust

the Global Belief Tree Recursive Neural Network (GBTRNN) by Paulus et al.

(2014) to the task of negation detection. They use the syntax trees as the

input to the model. The model only uses the information about the cue and

the syntactic constituents, while the lexical information stays hidden.

2.3 Baseline Approaches

A recent work by Khandelwal and Sawant (2020) uses a transformer-based

classifier, NegBERT, to train two models: a cue detection model and a scope

resolution model. They employ different labels for different cue types (affix-

ational, one-word, multi-word and not a cue). For scope resolution, they use

binary labels (in / out of scope). They use BERT (Devlin et al., 2019) as

their embedding model. They also utilize BERT to tokenize the words into

subwords and train the model on the tokenized data. For scope resolution,

they only provide the sentences that contain the cues to the model, encoding

the cues either by replacing them with special tokens (the “replace” method),

or adding a special token in front of the cue (the “augment” method). In both

cases the special token reflects the type of the cue it is related to. The predic-

tion happens in two phases: first predicting the cues and then the scope. They

postprocess the predictions to combine the subword-level tokens into word-

level tokens. Britto and Khandelwal (2020) build on NegBERT and expand

the task to uncertainty detection, phenomena often annotated in corpora

in parallel wih negation. They compare the influence of different embedding

models on the tasks, specifically BERT, RoBERTa (Liu et al., 2019) and XL-

Net (Yang et al., 2020). They also elaborate on their post-processing step,

comparing the two options of choosing a label for a word-level token out of
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subword-level labels: “average” (average the scores over all labels and output

the label with the greatest score) and “first token” (output the label of the

first subword-level token). Khandelwal and Britto (2020) approach the two

tasks by using the same architecture, but in multitask settings, training for

both negation and speculation at once. We use this system as our baseline to

contrast our dependency-based neural model with a sequence-tagging based

model.

Kurtz et al. (2020) suggest an approach that uses dependency graph rep-

resentations for negation resolution. They convert negation cues into the

dependency heads of their corresponding scope (dependents), with a small

set of relation labels referring to the scope (S) itself, the event (E) within

the scope and an additional label for the multi-word (M) cues (e.g. neither...

nor...). The cue (CUE) itself is governed as well by the root node (see Figure

7 of Section 4.2). The architecture for the suggested approach uses several

types of embeddings fed into a BiLSTM. FNN is applied to the output to

obtain the representation vectors corresponding to possible heads and depen-

dencies, which are then scored using a bilinear model (Dozat and Manning,

2018) to determine the most probable cues and scope spans. We build on the

work of Kurtz et al. (2020) and approach the negation detection as a depen-

dency parsing task, using their negation data representation and developing

four of our own novel representations.
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3 Data

A number of datasets from different domains have been annotated with nega-

tion information. Earlier work is bound in particular to the biomedical do-

main, with the detection systems often paying attention to specific medical

terms being negated. BioScope (Szarvas et al., 2008) is a frequently used

biomedical dataset annotated for negation. The concentration on the medi-

cal domain is due to it being one of the main areas of application of negation

detection systems, as well as simply lack of data in other domains. The do-

main coverage of negation corpora has since expanded, with Morante and

Daelemans (2012) introducing ConanDoyle-neg, a corpus of fictional litera-

ture annotated for negation, as well as Konstantinova et al. (2012) annotating

with negation a corpus of reviews in various domains (SFU Review). How-

ever, annotation guidelines differ significantly between corpora, meaning that

models trained on one domain tend to generalize poorly for use on other do-

mains. In this section we describe the three aforementioned datasets that we

use for negation detection, their annotation schemes and how they differ (see

Table 1 for an overview).

3.1 ConanDoyle-neg

The ConanDoyle-neg (CD-SCO) dataset (Morante and Daelemans, 2012)

comprises several literary texts written by Conan Doyle annotated with re-

spect to negation and its scope. The dataset was created for negation cue

and scope detection (Task 1) in the *SEM 2012 Shared Task (Morante and

Blanco, 2012), with a total size of 5,520 sentences. It is composed of the novel

The Hound of the Baskervilles used as a training set (66% of the data), The

Adventure of Wisteria Lodge as a development set (14.3%) and both The

Adventure of the Red Circle and The Adventure of the Cardboard Box as

test sets (19.7%). ConanDoyle-neg annotations include the cues, the negated

event corresponding to the given cue and the scope of negation (which ex-
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Dataset ConanDoyle-neg
BioScope

SFU Review
Abstracts Full papers

Source
Morante and

Daelemans (2012)
Szarvas et al. (2008)

Konstantinova

et al. (2012)

Domain fiction writing biomedical review

Sentence # 5,520 11,871 2,670 17,263

Negation sentence # 1,227 1,597 339 3,117

Negation instance # 1,421 1,719 376 3,518

Cue is a part of the scope no yes no

Includes discontinuous scopes yes no yes

Includes events yes no no

Annotates negation affixes yes
rarely, with the

whole word as a cue

yes, but with the

whole word as a cue

Tokenized yes no yes

File format CoNLL XML XML

Table 1: Dataset overview.

cludes the cue, but includes the event as as its part). The annotation scheme

allows discontinuous scopes:

...(those) not infrequent (occasions when he was up all night)...

The negation cues in the dataset can be divided into three types:

• One-word cues (e.g. no, not, without)

• Multi-word cues (e.g. neither... nor, by no means, on the contrary)

• Negation affixes

– Prefixes (5): un-, in-, im-, ir-, dis- (e.g. inadvertently, displeasure)

– Suffix (1): -less (e.g. helpless [ly])

The dataset is in CoNLL format (further *SEM 2012 format) consisting of

8+ columns. Columns 1-7 contain the file name, the sentence and token num-

bers, the word form, the lemma, the part-of-speech tag and a constituency

tree in bracketed form. The rest of the columns contain the information about

negation in the sentence according to the following principles:
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b01 153 0 I I PRP (S(NP*)

b01 153 1 trust trust VBP (VP*

b01 153 2 , , , *

b01 153 3 sir sir NNP (NP*)

b01 153 4 , , , *

b01 153 5 that that IN (SBAR*

b01 153 6 I I PRP (S(NP*) I

b01 153 7 have have VBP (VP* have

b01 153 8 not not RB * not

b01 153 9 inadvertently inadvertently RB (ADVP*))))) inadvertently in advertently

b01 153 10 – – : *

b01 153 11 ” ” ” *)

Figure 3: Example sentence from ConanDoyle-neg with 2 negation instances.

(a) When there is no negation in the sentence, the eighth column contains

***;

(b) For every negation instance in the sentence three new columns are

added to the seven existing columns; for example, if there are two negation

instances, the sentence will have thirteen columns in total, with columns 8-

10 corresponding to the first negation instance, and columns 11-13 to the

second one. The first negation column of an instance corresponds to the cue,

the second to the scope and the third to the event (Figure 3).

3.2 BioScope

BioScope (Szarvas et al., 2008) is a dataset concentrating on negation and

speculation in biomedical texts. It consists of three subcorpora: biological

paper abstracts (11,871 sentences) from the GENIA Event corpus (Kim et al.,

2008), full biological papers (2,670 sentences) and radiology reports (we did

not include the latter in this work). The dataset consists of negation and

speculation cues and their corresponding scopes. Unlike the aforementioned

ConanDoyle-neg dataset, BioScope is not annotated for events. Furthermore,
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Figure 4: Example sentence from BioScope.

it only includes one-word and multi-word cues, leaving the negation affixes

unmarked.

The following XML format is used for the corpus annotation. Each sen-

tence is encompassed within a sentence node, with chunks of text marked

as cue or xcope (scope) when necessary. The scopes are always continuous,

with cues being a part of their scope. Negation and speculation cues are dis-

tinguished through the inclusion of the attribute type. Each scope element

has an id, and each cue element has a ref ID referring to the corresponding

scope (see Figure 4). The corpus is not tokenized.

3.3 SFU Review

The Simon Fraser University Review corpus (SFU Review, Taboada

et al., 2006) is a corpus of reviews in eight different domains (books, cars,

computers, cookware, hotels, movies, music, phones). Each domain includes

50 reviews (25 negative and 25 positive). The total size of the corpus is

17,263 sentences. The corpus was annotated for negation and speculation by

Konstantinova et al. (2012). Like BioScope, it is annotated for cues (one-word

and multi-word) and their scopes and does not mark events. The words with

negation affixes are marked as negation cues in SFU Review, but without

separating the affix itself from the word.
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Figure 5: Example sentence from SFU Review.

I don’t know why you wouldn’t read this...

The corpus uses an XML format similar to BioScope, and bases its an-

notation on the BioScope guidelines. However, there are certain deviations

which are important to take note of. The cues are not considered to be part of

the scope, with the scopes now referring to the cue IDs via an additional ref

tag and its attribute SRC (Figure 5). This approach also results in allowing

discontinuous scopes in the data. As multi-word cues have a separate ID for

each of its parts, the scope reference ID includes all of the cue IDs separated

by a space (e.g. for a multi-word cue with IDs “39” and “40”, the scope

SRC ID will be “39 40”). Unlike BioScope, SFU Review provides tokenization

information by encompassing every token within W tags.
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4 Methodology

In this section, we describe our approach to the task, as well as details on

the architecture used. We provide a description of different ways to encode

negation resolution as dependency trees, including some of their advantages

and drawbacks.

4.1 Dependency Parser

We use the graph-based dependency parser STEPS (Stuttgart Transformer-

based Extensible Parsing System) by Grünewald et al. (2021). The parser

(see Figure 6) uses the biaffine architecture suggested by Dozat and Manning

(2017), a standard approach to graph-based dependency parsing. Every token

is transformed into two representations as a potential head and a potential

dependent applying feed-forward neural networks to the token embeddings.

The biaffine classifier then provides scores for all possible head-dependent

relations with the help of the obtained representations. We apply the un-

factorized approach (Dozat and Manning, 2018) to the processing of the

scores, which makes use of a single classifier scoring all head-dependent-label

combinations, with the absence of an arc between a head and a dependent

encoded as a null label. The system outputs the highest-scoring label for

every head-dependent pair, with additional post-processing for each of the

different data representations. The post-processors implemented for specific

representations will be described in Section 4.2.

The inputs to the system are composed with the help of pre-trained con-

textual word embeddings. We utilize multilingual XLM-R(oBERTa) (Con-

neau et al., 2019) based on the ideas of RoBERTa (Liu et al., 2019), as well as

a version of XLM-R fine-tuned for syntactic dependency parsing (Grünewald

et al., 2021) as our language models. The final token embeddings are com-

puted through the application of a layer attention mechanism following the

methods of Kondratyuk and Straka (2019).
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Figure 6: STEPS architecture (Grünewald et al., 2021).

The system also supports multitask training based on the approach of

Kondratyuk and Straka (2019). The coefficients for the scalar mixture of the

transformer layers, as well as the biaffine scorer weights are learned separately

for each task.

STEPS is built in Python with PyTorch (Paszke et al., 2019) as its base.

Huggingface Transformers library (Wolf et al., 2019) is used to work with the

transformer-based models.

4.2 Dependency Parsing Format

In order to approach negation resolution as a parsing problem, we change

the representation of the data. Following the ideas of Kurtz et al. (2020), we
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transform the data into dependency graphs, where the cues are represented

as the root elements of the sentence, and the scope elements are governed by

the cue in different ways. The root relations to the cues are labeled as CUE.

In the case of multi-word cues, the first token of the cue is the root, with the

rest of the tokens governed under the relation label M (for Multi-word). The

relations corresponding to event within the scope (if applicable to the data)

and the scope itself are labeled as E and S respectively. Using this labeling

scheme, we apply different mappings of the given data to the new format in

order to explore their influence on the training process.

We use a CoNLL format to store the data. The format requires tokeniza-

tion, which we keep the same as in the original datasets with a few exceptions.

As BioScope is not tokenized, we utilize NLTK for tokenization with some

additional post-processing rules for punctuation and URLs. For SFU Review,

we also break into tokens the original tokens that contained two words and a

newline break. To keep most of the data introduced in the original datasets

(mainly ConanDoyle-neg), we include five columns in the new format: token

number, word form, lemma, part-of-speech tag and dependency information

in the form head : relation label (Figure 7b). The pipe symbol (|) is used to

separate all of the relations for tokens with more than one head.

4.2.1 Direct Cue-to-Scope Mapping

In this mapping (Kurtz et al. (2020) mapping), the cue acts as the head of

all other elements in the scope. For multi-word cues, the first cue token (CUE)

governs the rest (M). A special case of a cue-event dependence occurs in the

words with negated affixes (e.g. unmitigated), where the affix (un-) acts as

the cue and the rest of the word (mitigated) as the event. Such cases are

specific to the ConanDoyle-neg dataset and are handled with the help of a

self-looping arc labeled E within the cue word (Figure 7). Post-processing is

used for predictions in this format that remove all scope and event arcs that

are not headed by a cue. The predictions are then converted into a *SEM
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... , an unmitigated scoundrel for whom there was neither pity nor excuse .

CUE

S
E

S

CUE

S

S

S

S E

M

E

1

(a) Visualized graph.

...

9 , , ,

10 an an DT 11:S

11 unmitigated unmitigated JJ 0:CUE|11:E

12 scoundrel scoundrel NN 11:S

13 for for IN 17:S

14 whom whom WP 17:S

15 there there EX 17:S

16 was be VBD 17:S

17 neither neither DT 0:CUE

18 pity pity NN 17:E

19 nor nor CC 17:M

20 excuse excuse NN 17:E

21 . . .

(b) CoNLL representation.

Figure 7: Direct cue-to-scope mapping (example taken from Kurtz et al.

(2020), ConanDoyle-neg dataset).

2012 format by interpreting every token in connection to the label of the

arc it is headed by. The mapping is easily interpretable as it makes direct

connection between the cues and scopes. However, a possible flaw is a lack

of a more specific pattern for a parser to learn.

4.2.2 Nested Mapping

Nested mapping is based on the direct cue-to-scope mapping but adapted

to nested scopes. A nested scope refers to the scope of a negation instance
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... there is no reason why I should not be perfectly frank .

S
S

CUE

E

S
S

S

S
S

S

S

S
S

S

CUE

S

S

S

1

... there is no reason why I should not be perfectly frank .

S
S

CUE

E

S

S
S

S

CUE

S

S

S

1

Figure 8: Direct (upper) vs. nested (lower) encoding (example taken from

ConanDoyle-neg).

that is a part of the scope of another instance. For an example, see Figure

8: the scope of the cue not is nested in the scope of the cue no. All three

datasets allow nested scopes. If a cue is part of the scope of another cue, the

scope of the first cue will be nested in the scope of the second cue. Thus, we

can modify the direct cue-to-scope mapping to omit redundant arcs by only

keeping the arcs that do not belong to a nested scope within the modified

scope. For the prediction, the same post-processing step as for direct mapping

is performed, with the scope not headed by the cue removed. The process of

conversion of the output is also similar, with an additional step of adding all

of the child element’s scopes and events to a head cue as well. Reducing the

arcs allows us to reduce the information necessary to learn. It also reduces

the number of labels associated with a token, when the token is an event

for one of the cues; here, it is only marked as an event and is automatically

recognized as a scope for the parental cues.
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... , an unmitigated scoundrel

CUE

S
E

S

1

(a) Spans without an end arc.

for whom there was neither pity nor excuse .

CUE

S

S

E

M

E

1

(b) A span with beginning and end arcs.

Figure 9: Span-like mapping (example taken from ConanDoyle-neg).

4.2.3 Span-like Mapping

Span-like mapping differs from the previous ones mainly in the encoding of

the scopes. This mapping was inspired by Yu et al. (2020), who use depen-

dency parsing for named entity recognition. The idea is to mark the beginning

and the end of the scope span rather than marking its every element, captur-

ing a “window” of the scope and relying more on word distance from the cue.

However, direct encoding of the spans as an arc from the cue as the beginning

and the arc from the beginning to the end has shown to be problematic. To

avoid ambiguity when decoding and to stay consistent, the following set of

rules was developed:

• The cue acts as the head of the token that is the beginning of the scope

span. In turn, the beginning acts as the head of the token that marks

the end of the span (e.g. Figure 9b);

• If the span is only one token long, the arc to mark the end of the span

is not created (e.g. Figure 9a);

• The cues (including the multi-word parts) are excluded from their

scopes, since a cue is not a part of its scope, as well as because a

scope span cannot start from its cue as it would cause a confusion with

an affixational self-loop;

• A scope span cannot start from an event as well as in that case it

might be confused with an arc that is only marking the event and not
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... there is no reason why I should not be perfectly frank .

S
S

CUE

E

S
S

S

S
S

S

S

S
S

S

CUE

S

S

S

1

(a) Direct mapping.

... there is no reason why I should not be perfectly frank .

CUE

S
S E

S
S

S
S

S

CUE

S

S
S

S

1

(b) Sharing arcs in span-like mapping (green).

... there is no reason why I should be perfectly frank .

CUE

S
S E

S

S

1

(c) No sharing arcs in span-like mapping (only one cue).

Figure 10: Arc sharing in span-like mapping (example taken from ConanDoyle-neg).

the start of the scope. For that reason, if an event is the first element

of a scope, the next scope element is marked as the beginning of the

span (e.g. Figure 10c). Events not surrounded by other scope elements

are excluded from the scope as well as they provide information about

being a part of the scope on their own (e.g. Figure 9b). Otherwise,

events are included in the scope;

• The cue can govern several scope spans:

– In the case of discontinuous scopes, every part of the scope is

encoded as a separate span;

– In order to avoid ambiguous span boundaries, a token marking

the beginning of a scope span always has only one dependent

marking its end. Thus, when two scopes have the same beginning,
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the longer scope is divided into two spans, sharing one span with

the shorter scope with their overlap and creating an additional

span for the non-overlapping part (see Figure 10);

– The scope is also divided into several parts if it starts with the

cue of a nested scope. In that case, the cue token is encoded as

a part of the scope with a separate arc, and the part that comes

after is encoded separately, e.g. Figure 10b (in case the token is

also an event, only the event label is kept, e.g. Figure 9a).

Unfortunately, the necessity of additional rules makes the mapping rather

complicated. This could potentially be resolved with an alternative mapping,

with both the start arc and the end arc coming from the cue and having

special labels to distinguish between those. This mapping is not used in this

thesis due to the time constraints.

4.2.4 Syntactic Mapping

Syntactic mapping builds on a syntactic dependency parse of the sentence.

The objective is to create syntax-based patterns in the representation while

encoding negation information. This is achieved via a set of rules:

• For every cue in the sentence the incoming syntactic arcs are reversed,

i.e. their heads are set as their dependants as long as the head is a part

of the scope of the given cue (“reverse rule”; e.g. an arc between not

and grass in Figure 11c);

• For every token in the scope that is not affected by the reverse rule,

the syntactic arc is kept as long as the head of the given scope token

is a part of the same scope;

• In the case of affixational negation, the part of the word that belongs

to the scope is encoded as a self-loop as in the other mappings;

• Based on the principles used to assign the head to the scope tokens

that do not fall into one of the above cases, the mapping is divided into

two separate representations:
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... the marks which you saw were on the path and not on the grass ...
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(a) Direct mapping.
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(b) Predicted dependencies.
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(c) Syntactic mapping.
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(d) Syntactic-direct mapping.

Figure 11: Syntactic vs. syntactic-direct mapping (example taken from ConanDoyle-neg).

30



There was no need for her to speak , nor for me either .
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(a) Direct cue-to-scope mapping.There was no need for her to speak , nor for me either .
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(b) Predicted dependencies.

There was no need for her to speak , nor for me either .
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(c) Syntactic mapping with shared arcs (green).

Figure 12: Shared scope in mappings (example taken from ConanDoyle-neg).

Syntactic:

– The tree path to the given scope token is explored until another

parental element that belongs to the same scope is found and

appointed as the head of the given token in the scope;

– If the root is reached before a head is assigned, the last token

affected by the reverse rule is assigned as the head (see Figure

11c);

– To avoid ambiguous arcs, the cue of the given scope is assigned as

the head if the last token is a cue of another scope.

Syntactic-direct :

– The tokens in the scope are directly linked to their cue as in the

direct cue-to-scope mapping (see Figure 11d).
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• In the case of nested scopes, all tokens of the nested scope are linked to

the outer cue via the cue of the nested scope as in the nested mapping;

• In the case of several partially overlapping scopes, a token that belongs

to the scope of more than one cue is only allowed to be the head of a

token that also belongs to the same scopes (Figure 12);

• In order to avoid cycles, the non-shared arc is connected to the highest

shared head in case of shared scopes (e.g. from me to need rather than

to speak in Figure 12c).

The predictions with this mapping are post-processed to exclude loops

from the dependency graph, as well as to exclude any scope predictions that

are not linked to a cue. This mapping’s advantage is that it provides a pattern

natural to the language. Unfortunately, it was not possible to keep every arc

exactly the same as in the actual dependency parses. As the datasets used

in this work do not include syntactic information, we used the syntactic

dependencies obtained from a model of the STEPS parser (see section 4.1).

This could lead to errors as well due to the possibility of incorrect parses of

the sentences.

32



5 Experiments

In this section, we will explain the metrics that we use for evaluating our

results, as well as our experimental setup.

5.1 Evaluation Metrics

Previous work has made use of a wide range of metrics for the evaluation of

negation detection. A negation instance can be evaluated on the correctness

of the prediction of its cue, scope and event, as well as all of its elements

together (“full” score). Furthermore, the elements can be evaluated on the

token level or the scope level. For the token level, the predicted label for

every token of a scope (or cue/event) is considered individually. The metric

indicates:

• How many of the tokens were correctly predicted as part of a given

scope (true positive, further TP);

• How many were incorrectly predicted to be part of the scope (false

positive, further FP);

• How many were incorrectly not predicted to be part of the scope (false

negative, further FN).

Every token belonging to more than one instance is considered as one in each

instance. For the scope level, all tokens of the instance must be predicted

correctly in order to count the prediction as correct.

In the following example, there is one gold multi-word cue CUE1 no ...

nor :

There are no footsteps nor any clue to the criminals .

GOLD CUE1 CUE1

PRED CUE1 CUE2

Token-level: TP - 1, FN - 1, FP - 1
Scope-level: TP - 0, FN - 1, FP - 2

1
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On the token level, the token no is counted as a TP, and nor is counted

as a FN. CUE2 any that is incorrectly predicted will count towards token-

level FPs. On the scope level, CUE1 is only considered as a whole no ... nor.

Since only no is predicted for CUE1, CUE1 counts as a FN (as it was not fully

predicted) and a FP (as what is predicted is not fully correct). Finally, CUE2

any will count towards FPs, just as on the token level.

The scope-level event and scope metrics also depend on the correct pre-

diction of the cue they are attached to. The scores can be calculated with a

full cue match, which means that in the case of a multi-word cue, all parts

of the cue should be predicted correctly. A score with a partial match allows

only one token of the cue to be predicted in order to count the event and

scope instances as correct. Finally, a score with no cue match is completely

independent of the cue prediction.

There are no footsteps nor any clue to the criminals .

GOLD S S CUE1 E CUE1 S E S S S

PRED1 S S CUE1 E S E S S S

PRED2 CUE1 E CUE1 S E

PRED1 PRED2

Scope (token-level, full cue match): TP - 0, FN - 8, FP - 8 TP - 3, FN - 5, FP - 0
Scope (token-level, partial cue match): TP - 8, FN - 0, FP - 0 TP - 3, FN - 5, FP - 0
Scope (token-level, no cue match): TP - 8, FN - 0, FP - 0 TP - 3, FN - 5, FP - 0
Scope (scope-level, full cue match): TP - 0, FN - 1, FP - 1 TP - 0, FN - 1, FP - 1
Scope (scope-level, partial cue match): TP - 1, FN - 0, FP - 0 TP - 0, FN - 1, FP - 1
Scope (scope-level, no cue match): TP - 1, FN - 0, FP - 0 TP - 0, FN - 1, FP - 1

1

The example above illustrates two cases of multi-word cue prediction:

PRED2 has the cue fully predicted whereas PRED1 failed to predict the second

part (nor) of the cue. For a full cue match metric, the predicted scope S of

PRED1 would count both as a FN and a FP (scope-level) as even though the

scope completely macthes the gold reference, the cue is underpredicted. For

partial cue match, however, this would count as a TP, since at least one part

of the predicted cue overlaps with the gold cue. On the other hand, PRED2

has a full cue match, so, even though the scope is a FN / FP on scope-level

as it is underpredicted, all of the correctly predicted tokens would count as
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TPs on token-level for both full and partial cue match. As no cue match does

not require any cue overlap, it would have the same scores as partial match

here (and the scores would stay the same even if the cue would be predicted

completely incorrectly). Note that events E are considered to be part of the

scope.

Finally, the strictest metric is full negation which requires all parts of the

cue and its scope (including events) to be correct. Both not predicting a gold

part of the negation instance and predicting a part that is not in gold would

discard the whole instance as a FN / FP. In the above examples, not one of

the instances could be counted as TP for this metric as all of them had some

parts predicted incorrectly.

As our base, we use the evaluation script of *SEM 2012 Shared Task

(Morante and Blanco, 2012). The script includes several of the aforemen-

tioned metric types:

• Scope-level cue;

• Scope-level scope with both full cue match and partial cue match;

• Token-level scope with partial cue match;

• Scope-level event with no cue match;

• Full negation;

• Percentage of sentences that had fully correct predictions;

• Precentage of sentences with negation that had fully correct predic-

tions.

In order to not punish the same faulty prediction twice, predictions that

appear in the gold data but are not fully correct, are only counted as false

negatives (these metrics will further be referred to as A-scores). As a follow-

up request, Morante and Blanco (2012) also included scores that counted the

mentioned cases as both false negatives and false positives (B-scores). The

*SEM 2012 metrics also exclude punctuation from their evaluation.

The *SEM 2012 evaluation script is written in Perl and is specifically

tailored to be used with Unix-formatted documents. Unfortunately, under
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closer inspection, a bug in event evaluation was discovered, such that some

of the false negatives were omitted, and some true positives were counted

as false positives. The script also lacks the token-level metrics used in other

works, providing only one for scope. Moreover, many previous works have

used their own scripts and metrics to evaluate their systems, making it a

challenge to compare between them. In order to cover as many metrics as

possible as well as to provide a Python alternative to the Perl script and fix

the event metrics, we re-implement the *SEM 2012 script in Python 3.7 and

add some new metrics to the implementation. The new script includes:

• Token- and scope-level cue;

• Token- and scope-level scope with full cue match, partial cue match

and no cue match;

• Token- and scope-level event with full cue match, partial cue match

and no cue match;

• Full negation;

• Token-level “binary label” score (for cue, scope and event) that counts

every token only once, even if it belongs to more than one scope;

• Percentage of sentences that had fully correct predictions;

• Precentage of sentences with negation that had fully correct predic-

tions.

Scores for scope, full negation and sentence percentage have a version that

excludes punctuation. For scope-level scores, both A-scores and B-scores are

included.

Here, we report token- and scope-level cue, scope (partial match, no punc-

tuation), event (partial match) and full negation (no punctuation). Scope-

level scores are A-scores (i.e. punishing partially correct predictions only as

false negative).
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Dataset Train Dev Test Total

ConanDoyle-neg

sentence # 3,644 787 1,089 5,520

sentence % 66% 14.3% 19.7% 100 %

negation instance # 984 173 264 1,227

negation sentence # 848 144 235 1,421

negation sentence % 23.3% 18.3% 21.6% 25.7 %

(reannotated) negation instance # 987 176 269 1,432

BioScope

Abstracts

sentence # 9,500 1,185 1,186 11,871

sentence % 80% 10% 10% 100%

negation instance # 1,396 156 167 1,719

negation sentence # 1,297 148 152 1,597

negation sentence % 13.7% 12.5% 12.8% 13.5%

Full papers

sentence # 2,136 267 268 2,670

sentence % 80% 10% 10% 100%

negation instance # 293 45 38 376

negation sentence # 268 41 30 339

negation sentence % 12.5% 15.4% 11.2% 12.7%

SFU Review

sentence # 13,614 1,817 1,800 17,231

sentence % 79% 11% 10% 100%

negation instance # 2,835 365 309 3,509

negation sentence # 2,503 328 276 3,107

negation sentence % 18.4% 18.1% 15.3% 18%

Table 2: Dataset splits.

5.2 Experimental Setup

We use the official data split for ConanDoyle-neg, a 79-11-10 split for SFU

Review (split by documents rather than sentences) and an 80-10-10 split for

BioScope (see Appendix A for detailed information on the dataset splits).

During the process of conversion to the dependency parsing format, we filter

out 32 sentences with annotation errors or with a scope that belongs to a cue

from a different sentence from SFU Review. Table 2 provides an overview

of the data splits, as well as information on the negation instances in the

splits (after filtering out). Negation sentence % is calculated as the number
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of negation sentences over the number of sentences in the given split. We also

create a version of ConanDoyle-neg with 10 multi-word cues reannotated as

one-word cues (3 in training, 3 in development and 4 in test sets), specifically

the cues neither ... nor [... nor], no ... nor and not ... not. For example:

... neither Mr. Warren, nor I, nor the girl has once set eyes

upon him.

The example is annotated to have one multi-word cue in the original dataset.

On the other hand, the reannotated version (further referred to as ConanDoyle-

neg (reannotated)) treats every token of the cue as a separate instance, with

every agent of the sentence (Mr. Warren, I, the girl) being a part of a scope

of a separate instance, and the shared action (has once set eyes upon him)

being an overlapping scope of the three instances. We use the same splits for

the reannotated version as for the original one.

We train our models without a pre-defined number of epochs but using

early stopping with the patience of 15 epochs. We use XLM-R as our trans-

former model. We optimize the model with an AdamW optimizer with a

learning rate of 3e−5. For a more detailed description of hyperparameters,

refer to Appendix B. We report an average F1-score of 5 runs for every model.

We use NegBERT (Khandelwal and Sawant, 2020; Britto and Khandel-

wal, 2020) as our baseline. In order for the results to be comparable, we

run NegBERT with our data splits and report the results obtained from our

own runs and our own evaluation script. We use two embedding models: the

multilingual XLM-R we use in STEPS (NegBERTXLM -R), and English-based

RoBERTa (NegBERTR), one of the models used in the original implemen-

tation with the closest architecture to XLM-R. We use the hyperparameters

reported in the original paper and train the model for 60 epochs, with an

early stopping patience of 6 and a batch size of 8. As an optimizer, Adam

with a learning rate of 3e−5 is used. We use the “augment” method for the cue

encoding and the “average” method for the label post-processing as they are
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reported to perform best (for more details on the methods, see Section 2.3).

As event resolution was not performed by Britto and Khandelwal (2020),

we add an additional event model based on NegBERT’s scope model for

ConanDoyle-neg. The results are averaged over 5 runs. We believe the orig-

inal results from the papers for scope resolution were obtained by feeding

gold cues to the system, so we report them as well (further referred to as

NegBERT (gold cues), see Appendix C). However, we believe the results are

not comparable to our models as we only feed the tokens to the parser, not

the gold cues, so we do not use these results as a baseline.

NegBERT outputs cue detection results as a list of labels, where 0 corre-

sponds to affixational cue, 1 to one-word cue and 2 to multi-word cue. The

scope and event predictions are outputted in the same fashion, separately for

every cue as a binary list of labels. For evaluation, we convert the predictions

into *SEM 2012 format. An issue arises when converting multi-word cues, as

there can be more than one multi-word cue in one sentence, but NegBERT’s

labeling scheme does not add any means of differentiating between them. For

example:

[No], [no], my dear Watson, [not at all], [by no means all].

The brackets confine every separate cue in the example. As these kinds of

cases are not very frequent, we do not implement any algorithm for checking

for such cues, and write all of the tokens labeled as 2 into one cue (i.e. in the

given example, the converter would write [not at all ... by no means all] as

one cue). This is more typical for SFU Review, which annotates cases like

didn’t as one cue consisting of two tokens, i.e. a multi-word cue, for example:

If you buy it [do n’t] say I [did n’t] warn you.

We also compare our results to those reported by Kurtz et al. (2020) for

experiments on ConanDoyle-neg. Their scores were obtained using the official

*SEM 2012 evaluation script where the event was meant to be measured with
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no cue match. As the results for the event score we report are based on partial

cue match, and since there was a bug related to the score found in the script,

we believe their event score is not directly comparable. However, we still

include it in our table for completeness. Furthermore, we only compare to

Kurtz et al. (2020) in the experiments on the original ConanDoyle-neg as

that is the dataset they used.

5.3 Experiment set 1: Exploring Dependency Mappings

In our first experiment set, we aim to explore different mappings and set-

tings to find the best performing ones. We use the original ConanDoyle-neg

for this purpose. Out of our five mappings, the nested mapping yields the

best results for every score except scope-level cue in our base settings (see

Table 3). Syntactic mapping provides the best result on token-level and sec-

ond best result on scope-level for cue detection, span-like mapping for event

resolution, and finally direct mapping for scope resolution and the full score

corresponding to an overall correctness of the whole instance.

To investigate the influence of the actual syntactic dependencies on the

task, we test our mappings by replacing the intial XLM-R model with an

XLM-R previously trained on Universal Dependency Treebank (Silveira et al.,

2014) using STEPS (further referred to as syntactic XLM-R). As the bound-

aries of the scope of the given cue are syntactically grounded, we expected

these settings to be the most influential for the scope resolution. For this

experiment we use the direct mapping as our base one, the nested mapping

as the best performing one, and the syntactic and the syntactic-direct as

the syntax-based ones. The token-level cue score increases for the syntactic-

direct mapping, and the scope-level cue score increases for all of the map-

pings except direct in these settings. This indicates that syntactic XLM-R

was especially helpful for prediction of the multi-word cues. Scope and event

scores increase for every mapping, having the greatest impact on the syntac-

tic and syntactic-direct mapping. The token-level scope score of the syntactic
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Cue Scope Event Full

Level Token Scope Token Scope Token Scope Scope

Kurtz et al. (2020) - 92.68 87.91 - - *63.69 59.40

NegBERTR 91.25 90.82 86.88 73.26 68.29 69.95 53.30

NegBERTXLM -R 89.61 89.28 86.31 75.67 67.03 69.02 53.54

Direct mapping 91.57 92.20 86.82 74.31 65.42 66.24 57.78

Nested mapping 92.78 92.98 87.54 74.71 68.12 68.32 58.69

Span-like mapping 92.56 92.91 79.01 70.07 66.59 67.54 56.08

Syntactic mapping 92.69 93.11 78.94 64.18 65.23 65.64 50.23

Syntactic-direct mapping 92.21 92.54 80.31 67.53 64.65 65.92 52.57

Syntactic XLM-R

Direct mapping 91.22 91.89 88.53 79.82 68.21 70.33 66.19

Nested mapping 92.77 93.03 87.90 79.68 68.99 70.80 66.17

Syntactic mapping 92.69 93.28 85.19 75.79 67.70 68.73 60.87

Syntactic-direct mapping 92.41 92.85 84.63 73.95 66.50 67.87 58.92

Multitask

Direct mapping 91.05 91.88 87.28 73.03 66.22 66.60 54.97

Nested mapping 92.06 92.69 87.43 74.56 67.45 68.23 58.34

Syntactic mapping 91.98 92.56 85.06 73.29 66.73 67.34 57.18

Multi + Synt XLM-R

Nested mapping 91.86 92.34 85.39 72.53 67.29 67.08 56.46

Table 3: Experiment results (F1-scores). Train / test set: ConanDoyle-neg.

Best result for a given metric is in bold, best performing mapping in the same settings in

italics.

mapping gains as much as 6.25%, and the scope-level score gains 11.61%,

indicating that not only more scope tokens were detected correctly, but also

that all tokens of the scope were found for more negation instances. The

full negation score also increases significantly for every mapping. The lesser

change of the scope scores in comparison to the full score for nested and

direct mapping suggests that the usage of the syntactic transformer model

contributes especially to collecting all of the tokens belonging to the scope of

the same instance. However, the best event results out of all mappings were
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again achieved using the nested mapping, with the direct mapping providing

the best scope and full negation scores.

Another approach to incorporating syntax in our model is multitask train-

ing. We train our models in parallel on the negation data of ConanDoyle-neg

and the enhanced dependency data of the Universal Dependency Treebank.

We use the mappings that performed best in the experiments with the syn-

tactic XLM-R, namely direct, nested and syntactic. The multitask setting

mostly influences the scope metrics of the syntactic mapping, making the

performance 6.2% higher on token-level and 9.11% higher on scope-level, as

well as the full negation score with a gain of 6.95% in the F1-score. The

event score also increases for direct and syntactic mappings. The cue met-

rics, however, decrease for all of the mappings. Finally, multitask training has

a negative impact on the nested mapping results, showing a decrease in all of

the scores. Nevertheless, the nested mapping still performs best in the given

settings. In general, using a pre-trained model appears to be much more ef-

fective for the task than training the model with negation and dependencies

side by side.

Finally, we take our best performing mapping (nested) and train it in the

same multitask settings, but on the syntactic XLM-R. This does not prove

to be beneficial and decreases the results for the mapping even further. Thus,

we conclude that the usage of syntax for negation detection is only fruitful

in moderation.

Overall, the best results of this experiment set were achieved with the

use of different settings and different mappings. With regard to the cue de-

tection, the best token-level score was achieved using nested mapping in the

base settings while the best scope-level score was achieved with a syntactic

mapping with the use of the syntactic XLM-R. The XLM-R model seems to

be helpful for detection of all tokens of the multi-word cues in this case. The

syntactic model is helpful for scope and event resolution, yielding the best

scores for scope and full instance with the direct mapping and for events with

the nested mapping.
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Most of our mappings perform on a par with or outperform Kurtz et al.

(2020) and NegBERT with the exception of scope resolution and full negation

detection, where three of our mappings (span-like, syntactic and syntactic-

direct) perform significantly lower. However, both syntactic and syntactic-

direct mappings outperform the two baselines when trained on a pre-terained

syntactic XLM-R. The nested and direct representations with the syntactic

XLM-R (the best performing mapping-settings combinations) outperform

the baselines in event resolution and full negation detection. The direct map-

ping performs better for scope resolution while the nested mappings achieves

better results for cue detection. In general, our systems mostly gain in per-

formance in scope and event resolution.

5.4 Experiment set 2: ConanDoyle-neg (Reannotated)

We test the mappings in the base settings and with the usage of the syntactic

XLM-R on ConanDoyle-neg (reannotated). We expect the models to perform

better for the cue detection with this dataset, as some of the errors made

by the models with the original dataset were related to the prediction of one

multi-word cue, e.g. neither ... nor, as several one-word cues, i.e. neither and

nor separately for the given example.

The cue scores increase for all mappings for this dataset (see Table 4).

Direct mapping performs best for this dataset for scope and event resolu-

tion and full negation detection, with the nested mapping achieving the best

token-level cue score and the syntactic mapping achieving best scope-level

score. The best results overall are achieved by the same models when using

XLM-R with an exception of scope-level scope metric performing slightly

better for nested mapping.

Scores for all metrics increase for NegBERTR when trained and tested

on reannotated ConanDoyle-neg except for the token-level events. On the

other hand, there is a much greater F1-score increase for NegBERTXLM -R,

especially for full negation. Our best models trained on the syntatic XLM-R,
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Cue Scope Event Full

Level Token Scope Token Scope Token Scope Scope

NegBERTR 91.52 91.57 87.87 77.62 67.88 69.98 53.63

NegBERTXLM -R 91.76 91.84 87.88 78.83 68.19 71.30 60.01

Direct mapping 93.13 93.47 87.24 73.19 66.49 66.25 57.77

Nested mapping 93.66 93.95 85.65 72.80 65.39 64.75 55.94

Syntactic mapping 93.61 93.86 79.28 65.50 65.35 66.01 51.97

Syntactic-direct mapping 93.62 93.97 80.80 65.58 65.24 66.24 52.54

Syntactic XLM-R

Direct mapping 93.32 93.61 88.03 79.05 68.40 70.63 65.88

Nested mapping 93.89 94.10 87.21 79.18 67.45 70.05 65.54

Syntactic mapping 93.44 93.82 84.94 75.64 67.04 68.34 61.14

Syntactic-direct mapping 93.83 94.19 84.87 74.27 65.65 67.01 59.16

Table 4: Experiment results (F1-scores). Train / test set: ConanDoyle-neg

(reannotated).

while being quite close to the NegBERTXLM -R results, mostly outperform

them. However, NegBERTXLM -R achieves a greater scope-level event score.

The results differ most notably in full negation, which suggests that the

NegBERT model works better on the token level, while our dependency-

parsing based models are able to capture all parts of the same negation

instance more often.

During the experiments, we have observed training instability, with differ-

ent models of the same mapping having a high performance range, especially

for full negation and scope on scope-level. For score distribution visualiza-

tion, refer to Appendix D. For the scope-level scope metric, the results range1

as much as 10.84% for the direct mapping, 12.38% for the nested mapping,

6.38% for the syntactic mapping and 8.81% for the syntactic-direct mapping.

The nested mapping is the most susceptible to the issue, with the a range

of 1.15% for scope-level cue metric, 10.2% for scope-level event metric and

1Range here refers to the difference between the minimum and maximum scores.
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Cue Scope Full

Level Token Scope Token Scope Scope

Test: BioScope Abstracts

Train: BioScope Abstracts

NegBERTR 92.33 90.47 86.14 85.75 83.00

NegBERTXLM -R 92.44 91.45 87.04 86.44 83.19

Direct mapping 97.08 96.42 89.65 83.90 82.58

Nested mapping 97.00 96.15 90.62 87.38 86.36

Syntactic XLM-R

Direct mapping 97.05 96.12 91.49 88.19 87.90

Nested mapping 97.11 96.25 92.40 89.08 88.74

Train: BioScope Full Papers

NegBERTR 92.26 91.60 86.00 81.25 78.57

NegBERTXLM -R 91.64 89.68 84.19 81.89 79.40

Direct mapping 94.23 94.12 78.83 58.86 56.48

Nested mapping 94.63 94.53 79.65 66.29 64.69

Syntactic XLM-R

Direct mapping 94.53 94.37 81.34 72.73 72.24

Nested mapping 94.10 93.92 80.05 66.74 66.38

Table 5: Experiment results (F1-scores). Train set: BioScope. Test set: Bio-

Scope Abstracts.

13.92% for the full negation metric. Using syntactic XLM-R significantly re-

duces the issue for the scope, event and full negation metrics, with nested

mapping only having a range of 2.21% for scope-level scope metric, 4.6% for

event metric and 2.49% for the full negation metric. The use of the syntactic

XLM-R has has little to no effect on the syntactic-direct mapping; however,

the syntactic and the syntactic-direct mapping appear to be least susceptible

to the issue in general.
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Cue Scope Full

Level Token Scope Token Scope Scope

Test: BioScope Full Papers

Train: BioScope Full Papers

NegBERTR 83.25 82.00 71.60 64.43 64.43

NegBERTXLM -R 83.14 81.81 69.12 71.47 70.44

Direct mapping 83.86 83.46 55.51 36.30 34.34

Nested mapping 84.11 83.71 55.83 43.33 41.90

Syntactic XLM-R

Direct mapping 82.76 82.34 55.71 43.06 41.48

Nested mapping 83.41 83.01 57.25 37.69 36.22

Train: BioScope Abstracts

NegBERTR 80.15 79.61 69.26 65.02 64.01

NegBERTXLM -R 79.91 78.97 66.72 64.03 61.29

Direct mapping 86.97 86.65 69.32 58.62 55.29

Nested mapping 86.41 86.07 70.43 62.55 61.21

Syntactic XLM-R

Direct mapping 86.44 86.09 73.63 63.43 62.60

Nested mapping 86.71 86.37 75.13 65.35 63.99

Table 6: Experiment results (F1-scores). Train set: BioScope. Test set: Bio-

Scope Full Papers.

5.5 Experiment set 3: Other Domains

To evaluate our models on the two other datasets, BioScope and SFU Review,

we only use direct and nested mappings as our best performing mappings.

We test them with the syntactic XLM-R as well.

For BioScope we do not concatenate Abstracts and Full Papers and train

and test the models separately on each of the subsets. The models trained

on BioScope Abstracts perform best when tested on both Abstracts (see Ta-

ble 5) and Full Papers (see Table 6). We believe the reason for that is the
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Cue Scope Full

Level Token Scope Token Scope Scope

NegBERTR 81.60 80.92 73.63 74.34 72.51

NegBERTXLM -R 82.47 81.85 74.50 74.91 73.60

Direct mapping 84.43 86.66 76.64 73.98 73.11

Nested mapping 84.50 86.53 76.29 73.33 72.35

Syntactic XLM-R

Direct mapping 84.85 87.03 77.00 74.83 74.12

Nested mapping 85.03 86.99 78.10 76.86 75.99

Table 7: Experiment results (F1-scores). Train / test set: SFU Review.

difference in size of the two subsets, with Abstracts being over 4 times larger

than Full Papers. The model trained on Abstracts data encoded with nested

mapping performs best for scope resolution and full negation detection, with

a performance gain when used with a syntactic XLM-R. For cue detection,

the scores do not differ much between the models, with best predictions with

the nested mapping and a syntactic XLM-R on cue token level and the direct

mapping on scope level for making prediction for Abstracts, and the nested

mapping on both levels for Full Papers. When trained on Full Papers, the

nested mapping performs best when testing on the same dataset, with the

syntactic XLM-R version performing better for the scope resolution on the

token level. For predictions on Abstracts, the nested mapping with syntactic

XLM-R generally performs best, with the cue metrics being slightly higher

for direct mapping in base settings.

NegBERT models perform better for the scope resolution and full nega-

tion detection than STEPS when trained on Full Papers, with NegBERTXLM -R

performing especially well for the scope-level metrics. This is indicative of

the greater dependence on the amount of data for STEPS in comparison to

NegBERT. The NegBERTR model also performs slightly better for the full

negation detection when trained and tested on Abstracts than the STEPS

model with the nested mapping and the syntactic XLM-R.
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For SFU Review, the nested mapping model trained on syntactic XLM-R

performs best for all scores (see Table 7), with the direct mapping trained

on syntactic XLM-R performing slightly better for cue predictions on scope

level. The best STEPS model strongly outperforms both of the NegBERT

models.

5.6 Experiment set 4: Cross-Domain

We perform cross-domain testing of the models from the previous experi-

ments (for ConanDoyle-neg we use the models trained on the reannotated

version). For a full F1-score report of the results, see Appendix E.

The model trained on SFU Review is able to predict best for ConanDoyle-

neg (reannotated), with the highest cue detection results achieving 76.36%

and 73.84% F1-score on the token and scope levels, respectively; the highest

scope detection results 67.2% and 15.04% on the token and scope levels,

respectively; and the highest full negation results 15.32% (see Table 14 of

Appendix E). The results were achieved with a direct mapping model, with

scope results using a model trained on syntactic XLM-R. All of the models,

both STEPS and NegBERT (regardless of the training dataset), show very

low scope-level scope and full negation scores in cross-domain settings. This

implies that even though the models are able to predict some parts of the

scopes, they fail to predict the full scope of an instance. This is most likely

due to different scope boundary annotation in the datasets.

The BioScope datasets achieve the best predictions in cross-domain set-

tings with the model trained on SFU Review as well (see Tables 15 and 16

of Appendix E). This result is explainable by the fact that the SFU Review

annotation guidelines built on the BioScope annotation guidelines, thus, the

annotation scheme of BioScope and SFU Review are much closer to each

other than to that of ConanDoyle-neg. The model using the nested map-

ping and the syntactic XLM-R yields the overall best results, with the direct

mapping model with the syntactic XLM-R performing best for the scope-
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level cue detection for BioScope Full Papers and token-level scope detection

for BioScope Abstracts and the nested mapping model in the base settings

performing best for the cue detection for BioScope Abstracts.

The SFU Review corpus is best predicted with the model trained on

BioScope, with Abstracts being first and Full Papers being second best (see

Table 17 of Appendix E). It should be noted that Full Papers, despite its

size, performs better than ConanDoyle-neg due to closer annotation schemes

with SFU Review. The direct mapping model performs best, with the one

using the syntactic XLM-R performing better for scope and token-level cue

detection.

Both of the NegBERT models tend to outperform the STEPS models

in cross-domain experiments when tested on ConanDoyle-neg (reannotated)

and SFU Review, indicating that the dependency-based models are more

domain- and annotation-scheme dependent, and NegBERT models are more

generalizable. The NegBERT models also outperform STEPS when trained

on ConanDoyle-neg and tested on BioScope Full Papers. As for the rest of

the experiments on BioScope, STEPS generally yields better results. Both

NegBERT and STEPS achieve the best results when trained and tested on the

same dataset, indicating that all in all, generalization remains a widespread

challenge for both dependency-parsing based and sequence-tagging based

approaches.
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6 Discussion

6.1 Error Analysis

For ConanDoyle-neg, the models achieve the lowest scores for the event pre-

diction among cue, scope and event detection. The reason behind this is the

annotation scheme. The annotation guidelines of ConanDoyle-neg state that

the event is to be annotated only if it is factual (Morante et al., 2011; p.

32). However, factuality is a complex concept which the models do not easily

learn. This leads to many FP predictions of the event when it is non-factual

(see Figure 13b) and the frequent FN abscence of predictions of the event

when it is factual (see Figure 13a). This is the most frequent error that the

models trained on ConanDoyle-neg make.

GOLD “ There is nothing here , ” he said .

CUE

S

E S

PRED “ There is nothing here , ” he said .

CUE

S

S S

1

(a) An incorrectly not predicted event (FN).

GOLD I suppose there could not be two people in your rooms ...

CUE

S

S S
S

S

S
S

S

PRED I suppose there could not be two people in your rooms ...

CUE

S

E S
S

S

S
S

S

1

(b) An incorrectly predicted event (FP).

A modal construction is not marked as an event.

Figure 13: Incorrect event predictions (ConanDoyle-neg).
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GOLD “ I ’ll have no more of it !

CUE

S
S

S M

S
S

PRED “ I ’ll have no more of it !

CUE

S
S

S S

S
S

1

Figure 14: Partially predicted multi-word cue.

Another source of prediction errors is multi-word cues such as no more,

never more and absolutely nothing. While the model is able to label the most

obvious negation part as the cue (i.e. no, never, nothing), it fails to detect

the rest of the cue (see Figure 14). The reason for this might be the lack

of data that includes such cues: the training set does not have either of the

listed cues, but contains other multi-word cues instead. A less frequent but

occurent cue-related issue is the prediction of affixational cues. The models

sometimes label as cues the words that look similar to the affixational cues

but are not actually cues (e.g. innocent). Moreover, some of the words that

can be an affixational cue in a certain context might not serve as such in a

different context but still be predicted as such (e.g. You are uneasy ...).

The scope-level scope metric is affected by some tokens of a scope not

being predicted as such. For all three datasets, conjunctions and prepositions

such as if, with, except, and, but, as well as commas in some cases play the

role of scope delimiters, with some of the scope tokens being “cut-off” when

occuring after such a delimiter or when embedded within commas (see Figure

15a). The models trained on BioScope also occasionally fail to predict the

tokens of the scope that are located in front of the cue (see Figure 15b). The

models trained on syntactic XLM-R handle these kinds of cases better, most

probably because they are based on the syntactic relations of the sentence

rather than just surrounding lexical infromation.
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GOLD That ’s not the case at all , if you read the book .

CUE

S

S
S

S
S

S
S

S

S

S

PRED That ’s not the case at all , if you read the book .

CUE

S

S
S

S

1

(a) Scope cut off by delimiters “, if ” (SFU Review).

GOLD ... when LMP1 is unable to activate NF-kappaB ...

S

S

CUE

S

S

S

PRED ... when LMP1 is unable to activate NF-kappaB ...

CUE

S

S

S

1

(b) Scope without the tokens in front of the cue predicted (BioScope).

Figure 15: Partially predicted scopes.

The evaluation results for SFU Review generally show a lower precision

in comparison to the recall. This is due to many negated constructions be-

ing predicted as such, but not annotated as such. For example, none of the

following sentences were annotated as negated but were predicted as negated:

... it didn’t really speak to me.

I really don’t have many complaints ...

If you can’t afford a whole set ...

For the original version of ConanDoyle-neg, many mappings fail to predict

multi-word cues such as neither...nor. The span-like mapping models predict
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GOLD ... neither Mr. Warren , nor I , nor the girl ...

CUE

M

M

PRED ... neither Mr. Warren , nor I , nor the girl ...

CUE CUE CUE

1

Figure 16: Multi-word cue prediction with span-like mapping (ConanDoyle-

neg (orig.))).

GOLD Nor was fragmentation observed after treatment with RU38486 , indicating that repression of AP-1 activity is not involved .

CUE

S

S

S

S

S

S

S

CUE

S

S
S

S

S
S

PRED Nor was fragmentation observed after treatment with RU38486 , indicating that repression of AP-1 activity is not involved .

CUE

S

S

S

S

S

S

S

S

S
S

S

S

S

CUE

S

S
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S
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S
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S

1

Figure 17: Direct mapping scope prediction for the two cues in the same

sentence (BioScope).

each part of the cue as a separate one-word cue (see Figure 16; note that for

simplicity, only cues are shown in the figure; scopes and events are omitted).

The nested, syntactic and syntactic-direct mappings tend to predict the first

token of the cue as the cue, with the rest of the token predicted as a part of

the scope.

The direct mapping models have a tendency to link most of the tokens
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GOLD ... nor the girl has once set eyes upon him .

CUE

S
S S

S

E

S S

S

PRED ... nor the girl has once set eyes upon him .

CUE

S

S

S S S

S

1

Figure 18: Prediction of a syntactic mapping model (ConanDoyle-neg (re-

ann.)).

labeled as scope to every cue in the sentence when there is more than one

cue (see Figure 17). The nested mapping models avoid such errors, presum-

ably, because they learn fewer cases with one token being a scope dependent

of several cues. The use of the syntactic XLM-R also helps to reduce this

problem, possibly due to its more sytactic reasoning for arc assignment.

An error specific to the syntactic mapping significantly hurts the models

scope and event detection performance. The model is able to predict the

scope and event arc but fails to make an arc from the cue to one of the scope

or event tokens. This leads to completely disregarding the scope and event

prediction as not belonging to a cue. In the example in Figure 18, despite

most of the scope tokens being predicted, all of them are discarded as there

is no arc coming from the cue. The syntactic-direct mapping is less prone to

such errors, which is probably due to the fact that it learns more arcs coming

out from the cue token than the syntactic mapping.

6.2 Outlook

We have explored five different ways to encode negation data as dependency

graphs; however, we realize that there is still room for improvement of the

suggested mappings. The encodings can be evolved further to avoid some
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of the flaws discovered in this work. For example, simplifying the span-like

mapping to create a more intuitive and more machine-learnable encoding

may provide fruitful results. Moreover, developing more sophisticated post-

processing tactics for some of the mappings can improve the performance

of the corresponding models. For example, additional post-processing can

be applied to the scope that was predicted without any cue to determine

whether it should be linked to a cue or discarded. Furthermore, a different

neural model can be developed; for example, a “hybrid” model combining a

tagger for cue detection with a dependency parser for scope prediction, where

the latter would be fed the predicted cues as the input.

One of the challenges of the task is the existence of a large number of

different metrics used to evaluate negation detection with no universally ac-

cepted metric or definition of the way the existing metrics should be mea-

sured. With our implementation of an evaluation script, we hope to create

an evaluation basis for future works and to make it possible to obtain scores

comparable to the past works. Systematic comparison of other approaches

applied previously using the same evaluation process would be a great con-

tribution to the proper investigation of the phenomenon of negation.

Another challenge of the task that remains open is poor domain gener-

alization, largely due to the annotation differences within each domains. A

potential improvement step in that direction may include developing a semi-

automatic means of annotation unification for the existing negation datasets.
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7 Conclusion

In this thesis, we have approached negation resolution as a dependency pars-

ing task by transforming the data into dependency graphs and applying a

dependency parser to detect negation instances in text. Our aim was to in-

vestigate the influence of such an approach on a task not typical for parsing.

We were guided by the idea of a close relation between the negation scope

boundaries and the syntactic structure of the sentence. We have presented

four novel linguistically motivated encodings for approaching the negation

resolution task as dependency parsing and compared the encodings against

each other, as well as against the encoding suggested by Kurtz et al. (2020),

which inspired this work. We have found the nested encoding to perform best

in most cases, especially for scope resolution and full negation detection, with

the direct mapping sometimes performing better for cue detection. We have

looked into the advantages and disadvantages of different encodings, as well

as the reasons behind their different ways of behaving when used for the

negation detection task.

We have tested our dependency-based approach against two sequence-

labeling baseline models, with sequence labeling being the typical approach

for the negation detection task. We have shown that our direct and nested

mapping models with the use of the syntactic XLM-R outperform the se-

quence labeling approach on in-domain experiments, proving that syntax is

a useful tool for identifying the scope boundaries. We have also investigated

the flaws of our model, finding that its performance is rather dependent on

the size of the data. We have performed cross-domain experiments, where

the sequence tagging models have outperformed our models in cases when

the training and test datasets differed significantly in annotation. Overall,

domain generalization has proven to still be a challenge.

Finally, we have implemented our own evaluation script for a range of

existing metrics for negation detection to make a fair comparison between

the different systems possible, to collect the greatly varying metrics into one
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script and establish an evaluation basis for future works.
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335–339, Montréal, Canada. Association for Computational Linguistics.

Michael Wiegand, Alexandra Balahur, Benjamin Roth, Dietrich Klakow, and

Andrés Montoyo. 2010. A survey on the role of negation in sentiment

analysis. In Proceedings of the Workshop on Negation and Speculation in

Natural Language Processing, pages 60–68, Uppsala, Sweden. University of

Antwerp.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement

Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
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A Split IDs

Table 8 provides information on the sentences and documents that we used

for the data splits of BioScope and SFU Review for our experiments.

Dataset Sentence IDs

Bioscope Abstracts

train S1 - S1017

dev S1018 - S1147

test S1148 - S1273

Bioscope Full Papers

train S1 - S6; S7.1 - S7.7

dev S7.8 - S7.274

test S7.275 - S7.330; S8 - S9

Dataset File names

SFU Review

train yes[1-20].xml, no[1-20].xml

dev yes[21-22].xml, no[21-23].xml

test yes[23-25].xml, no[24-25].xml

Table 8: Sentences IDs (BioScope) and file names (SFU Review) for sentences

from the data splits used in the experiments.
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B Hyperparameters

Table 9 lists the hyperparameters used with the STEPS models.

Transformer LM

Token mask probability 0.15

Layer dropout 0.1

Hidden dropout 0.2

Attention dropout 0.2

Output dropout 0.5

Biaffine classifier

Arc and label scorer dimension 1024

Dropout 0.33

Optimization

Optimizer AdamW

Weight decay 0

Batch size 32

Base learning rate 4e−5

LR schedule Noam

LR warmup 1 epoch

Table 9: Hyperparameter values used for STEPS.
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C NegBERT Results

The following tables report results for the NegBERT models (Khandelwal

and Sawant, 2020; Britto and Khandelwal, 2020) trained on various datasets

and tested on a specific dataset. Table 10 reports results for testing on

ConanDoyle-neg, both original and reannotated, Table 11 for testing on Bio-

Scope Abstracts, Table 12 for testing on Full Papers and Table 13 for test-

ing on SFU Review. NegBERTR refers to the NegBERT model trained on

RoBERTa and NegBERTXLM -R to the model trained on XLM-R. The results

are reported for two versions of the scope and event prediction:

(a) NegBERT: the model was fed predicted cues;

(b) NegBERT (gold cues): the model that was fed gold cues.
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Cue Scope Event Full

Level Token Scope Token Scope Token Scope Scope

Test: ConanDoyle-neg

Train: ConanDoyle-neg

NegBERTR 91.25 90.82 86.88 73.26 68.29 69.95 53.30

NegBERTXLM -R 89.61 89.28 86.31 75.67 67.03 69.02 53.54

NegBERTR (gold cues) - - 91.05 79.36 71.87 74.72 59.06

NegBERTXLM -R (gold cues) - - 91.78 83.18 71.69 74.72 60.27

Test:ConanDoyle-neg (reannotated)

Train: ConanDoyle-neg (reannotated)

NegBERTR 91.52 91.57 87.87 77.62 67.88 69.98 53.63

NegBERTXLM -R 91.76 91.84 87.88 78.83 68.19 71.30 60.01

NegBERTR (gold cues) - - 92.73 84.59 73.05 75.84 59.80

NegBERTXLM -R (gold cues) - - 92.55 85.39 72.40 76.18 65.59

Train: BioScope Abstracts

NegBERTR 77.10 74.52 65.82 13.85 - - 11.02

NegBERTXLM -R 71.40 67.72 61.70 13.03 - - 13.38

NegBERTR (gold cues) - - 76.20 19.26 - - 16.09

NegBERTXLM -R (gold cues) - - 76.54 19.38 - - 17.51

Train: BioScope Full Papers

NegBERTR 76.09 74.66 64.39 14.41 - - 11.55

NegBERTXLM -R 68.91 68.90 58.86 12.97 - - 8.77

NegBERTR (gold cues) - - 75.73 20.49 - - 16.59

NegBERTXLM -R (gold cues) - - 74.74 20.35 - - 14.20

Train: SFU Review

NegBERTR 77.07 74.73 69.23 14.55 - - 14.97

NegBERTXLM -R 77.30 74.38 68.24 15.25 - - 14.67

NegBERTR (gold cues) - - 74.97 19.16 - - 18.97

NegBERTXLM -R (gold cues) - - 73.75 19.96 - - 19.83

Table 10: Experiment results for NegBERT (F1-scores). Test set:

ConanDoyle-neg (original / reannotated).
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Cue Scope Full

Level Token Scope Token Scope Scope

Test: BioScope Abstracts

Train: ConanDoyle-neg (reannotated)

NegBERTR 60.66 58.87 51.88 24.32 20.24

NegBERTXLM -R 63.40 61.66 52.93 24.53 21.84

NegBERTR (gold cues) - - 79.31 46.62 40.93

NegBERTXLM -R (gold cues) - - 76.54 44.94 40.99

Train: BioScope Abstracts

NegBERTR 92.33 90.47 86.14 85.75 83.00

NegBERTXLM -R 92.44 91.45 87.04 86.44 83.19

NegBERTR (gold cues) - - 94.79 93.51 91.97

NegBERTXLM -R (gold cues) - - 93.60 92.65 91.55

Train: BioScope Full Papers

NegBERTR 92.26 91.60 86.00 81.25 78.57

NegBERTXLM -R 91.64 89.68 84.19 81.89 79.40

NegBERTR (gold cues) - - 92.91 87.51 85.26

NegBERTXLM -R (gold cues) - - 92.65 88.99 87.81

Train: SFU Review

NegBERTR 80.65 78.98 69.35 65.29 62.81

NegBERTXLM -R 82.18 80.60 69.19 66.54 64.15

NegBERTR (gold cues) - - 85.64 82.08 82.14

NegBERTXLM -R (gold cues) - - 83.43 79.38 79.33

Table 11: Experiment results for NegBERT (F1-scores). Test set: BioScope

Abstracts.
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Cue Scope Full

Level Token Scope Token Scope Scope

Test: BioScope Full Papers

Train: ConanDoyle-neg (reannotated)

NegBERTR 61.31 58.56 44.78 22.03 20.24

NegBERTXLM -R 58.30 55.70 41.03 18.80 18.10

NegBERTR (gold cues) - - 74.20 41.58 37.54

NegBERTXLM -R (gold cues) - - 71.62 37.64 37.05

Train: BioScope Abstracts

NegBERTR 80.15 79.61 69.26 65.02 64.01

NegBERTXLM -R 79.91 78.97 66.72 64.03 61.29

NegBERTR (gold cues) - - 92.06 83.71 83.36

NegBERTXLM -R (gold cues) - - 87.36 81.14 80.77

Train: BioScope Full Papers

NegBERTR 83.25 82.00 71.60 64.43 64.43

NegBERTXLM -R 83.14 81.81 69.12 71.47 70.44

NegBERTR (gold cues) - - 87.94 82.33 82.33

NegBERTXLM -R (gold cues) - - 89.41 89.17 88.85

Train: SFU Review

NegBERTR 79.71 76.53 66.26 59.63 59.45

NegBERTXLM -R 78.39 75.24 66.09 59.81 59.51

NegBERTR (gold cues) - - 87.09 77.01 77.01

NegBERTXLM -R (gold cues) - - 87.28 80.44 80.44

Table 12: Experiment results for NegBERT (F1-scores). Test set: BioScope

Full Papers.
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Cue Scope Full

Level Token Scope Token Scope Scope

Test: SFU Review

Train: ConanDoyle-neg (reannotated)

NegBERTR 62.35 53.48 54.13 11.62 11.36

NegBERTXLM -R 66.34 57.87 56.01 14.51 14.79

NegBERTR (gold cues) - - 78.06 33.09 32.24

NegBERTXLM -R (gold cues) - - 76.95 32.47 32.99

Train: BioScope Abstracts

NegBERTR 67.26 58.25 65.75 62.98 47.46

NegBERTXLM -R 60.01 65.35 60.82 57.47 53.45

NegBERTR (gold cues) - - 86.05 84.78 84.78

NegBERTXLM -R (gold cues) - - 85.27 83.62 83.72

Train: BioScope Full Papers

NegBERTR 67.77 58.32 65.87 62.46 46.47

NegBERTXLM -R 61.75 59.40 61.65 56.72 46.17

NegBERTR (gold cues) - - 84.36 82.30 80.73

NegBERTXLM -R (gold cues) - - 82.56 79.48 78.69

Train: SFU Review

NegBERTR 81.60 80.92 73.63 74.34 72.51

NegBERTXLM -R 82.47 81.85 74.50 74.91 73.60

NegBERTR (gold cues) - - 88.87 90.75 90.77

NegBERTXLM -R (gold cues) - - 88.69 90.84 91.04

Table 13: Experiment results for NegBERT (F1-scores). Test set: SFU Re-

view.
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D ConanDoyle-neg F1-Score Distribution

The following figures depict the distribution of scores for various metrics

for the STEPS models trained on ConenDoyle-neg (reannotated). Figure 19

depicts the F1-score distribution for the cue metrics, Figure 20 for the scope

metrics, Figure 21 for the event metrics and Figure 22 for the full negation

metric.

(a) Base settings. (b) Syntactic XLM-R.

Figure 19: The distribution of F1-scores for cue detection.

(a) Base settings. (b) Syntactic XLM-R.

Figure 20: The distribution of F1-scores for scope detection.
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(a) Base settings. (b) Syntactic XLM-R.

Figure 21: The distribution of F1-scores for event detection.

(a) Base settings. (b) Syntactic XLM-R.

Figure 22: The distribution of F1-scores for full negation detection.
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E Cross-domain Results

The following tables report cross-domain results for the STEPS models (Grünewald

et al., 2021) in comparison to the NegBERTR and NegBERTXLM -R models

trained on various datasets and tested on a specific dataset. Table 14 reports

results for testing on ConanDoyle-neg (reannotated), Table 15 for testing on

BioScope Abstracts, Table 16 for testing on BioScope Full Papers and Ta-

ble 17 for testing on SFU Review. The highest results are written in bold,

the highest results among different mappings within the same settings are

written in italics.
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Cue Scope Full

Level Token Scope Token Scope Scope

Test: ConanDoyle-neg (reannotated)

Train: BioScope Abstracts

NegBERTR 77.10 74.52 65.82 13.85 11.02

NegBERTXLM -R 71.40 67.72 61.70 13.03 13.38

Direct mapping 72.39 68.43 56.07 13.12 12.96

Nested mapping 71.09 66.47 53.91 13.64 10.74

Syntactic XLM-R

Direct mapping 73.02 68.88 58.30 13.76 10.21

Nested mapping 72.52 68.11 59.97 13.71 10.54

Train: BioScope Full Papers

NegBERTR 76.09 74.66 64.39 14.41 11.55

NegBERTXLM -R 68.91 68.90 58.86 12.97 8.77

Direct mapping 68.87 67.95 49.17 13.02 11.77

Nested mapping 67.91 66.86 48.49 11.45 11.22

Syntactic XLM-R

Direct mapping 70.34 69.53 52.06 10.39 10.55

Nested mapping 71.50 71.06 50.66 10.75 10.14

Train: SFU Review

NegBERTR 77.07 74.73 69.23 14.55 14.97

NegBERTXLM -R 77.30 74.38 68.24 15.25 14.67

Direct mapping 76.36 73.84 65.27 14.19 15.23

Nested mapping 74.98 72.43 65.05 13.97 13.34

Syntactic XLM-R

Direct mapping 75.55 72.45 67.20 15.04 13.18

Nested mapping 76.11 73.16 66.43 14.98 14.41

Table 14: Experiment results (F1-scores). Test set: ConanDoyle-neg (rean-

notated).
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Cue Scope Full

Level Token Scope Token Scope Scope

Test: BioScope Abstracts

Train: ConanDoyle-neg (reannotated)

NegBERTR 60.66 58.87 51.88 24.32 20.24

NegBERTXLM -R 63.40 61.66 52.93 24.53 21.84

Direct mapping 67.19 65.57 54.53 17.53 4.82

Nested mapping 69.38 67.79 54.62 16.99 5.30

Syntactic mapping 68.89 67.29 46.76 13.34 5.64

Syntactic-direct mapping 69.02 67.41 45.39 9.84 2.05

Syntactic XLM-R

Direct mapping 67.60 65.93 57.17 22.14 4.50

Nested mapping 68.12 66.48 58.34 25.22 5.22

Syntactic mapping 69.80 68.16 57.03 23.63 8.75

Syntactic-direct mapping 69.23 67.58 55.35 19.75 5.84

Train: SFU Review

NegBERTR 80.65 78.98 69.35 65.29 62.81

NegBERTXLM -R 82.18 80.60 69.19 66.54 64.15

Direct mapping 84.98 83.63 70.20 62.09 58.67

Nested mapping 85.43 84.09 71.70 63.24 60.16

Syntactic XLM-R

Direct mapping 84.99 83.63 72.78 68.78 66.00

Nested mapping 85.39 84.05 72.74 68.91 66.38

Table 15: Experiment results (F1-scores). Test set: BioScope Abstracts.
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Cue Scope Full

Level Token Scope Token Scope Scope

Test: BioScope Full Papers

Train: ConanDoyle-neg (reannotated)

NegBERTR 61.31 58.56 44.78 22.03 20.24

NegBERTXLM -R 58.30 55.70 41.03 18.80 18.10

Direct mapping 57.27 54.82 41.68 14.54 5.13

Nested mapping 58.94 56.42 43.71 15.47 6.64

Syntactic mapping 58.90 56.44 39.28 14.81 3.77

Syntactic-direct mapping 59.17 56.66 39.36 12.52 2.93

Syntactic XLM-R

Direct mapping 56.75 54.17 41.95 10.63 0.00

Nested mapping 57.19 54.59 46.67 12.25 0.53

Syntactic mapping 58.53 56.00 47.01 21.93 9.07

Syntactic-direct mapping 58.75 56.16 46.71 18.78 4.47

Train: SFU Review

NegBERTR 79.71 76.53 66.26 59.63 59.45

NegBERTXLM -R 78.39 75.24 66.09 59.81 59.51

Direct mapping 79.79 76.64 62.26 50.88 49.80

Nested mapping 79.79 76.64 65.24 54.17 52.15

Syntactic XLM-R

Direct mapping 78.86 76.72 68.30 59.63 58.35

Nested mapping 79.79 76.64 68.49 60.18 59.20

Table 16: Experiment results (F1-scores). Test set: BioScope Full Papers.

78



Cue Scope Full

Level Token Scope Token Scope Scope

Test: SFU Review

Train: ConanDoyle-neg (reannotated)

NegBERTR 62.35 53.48 54.13 11.62 11.36

NegBERTXLM -R 66.34 57.87 56.01 14.51 14.79

Direct mapping 66.37 57.39 53.50 10.22 5.90

Nested mapping 66.64 57.55 54.65 11.63 7.14

Syntactic mapping 66.65 57.50 49.70 8.07 5.98

Syntactic-direct mapping 66.78 57.65 49.61 8.51 5.17

Syntactic XLM-R

Direct mapping 66.41 57.44 55.88 12.35 5.61

Nested mapping 66.05 57.11 55.34 13.22 6.02

Syntactic mapping 66.70 57.64 53.21 12.59 7.39

Syntactic-direct mapping 66.91 57.93 53.37 12.36 7.67

Train: BioScope Abstracts

NegBERTR 67.26 58.25 65.75 62.98 47.46

NegBERTXLM -R 60.01 65.35 60.82 57.47 53.45

Direct mapping 61.24 68.31 59.41 54.00 51.06

Nested mapping 59.64 66.69 57.25 53.25 50.83

Syntactic XLM-R

Direct mapping 69.64 63.39 69.37 61.59 48.07

Nested mapping 67.71 63.37 67.57 60.28 48.42

Train: BioScope Full Papers

NegBERTR 67.77 58.32 65.87 62.46 46.47

NegBERTXLM -R 61.75 59.40 61.65 56.72 46.17

Direct mapping 58.25 63.53 54.88 41.42 38.08

Nested mapping 57.24 62.87 55.12 42.33 38.80

Syntactic XLM-R

Direct mapping 68.16 59.33 60.89 48.93 35.30

Nested mapping 68.37 59.62 59.50 43.66 32.10

Table 17: Cross-domain experiment results (F1-scores). Test set: SFU Review.
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