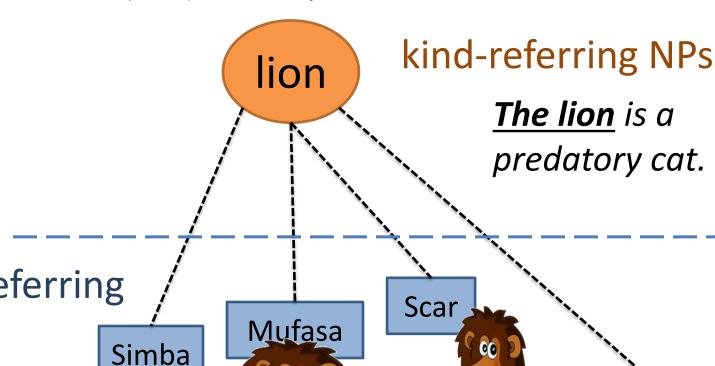
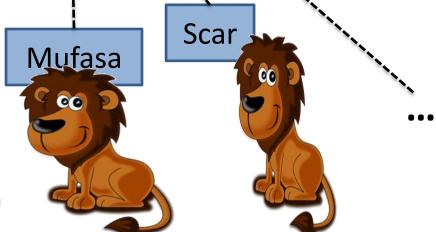


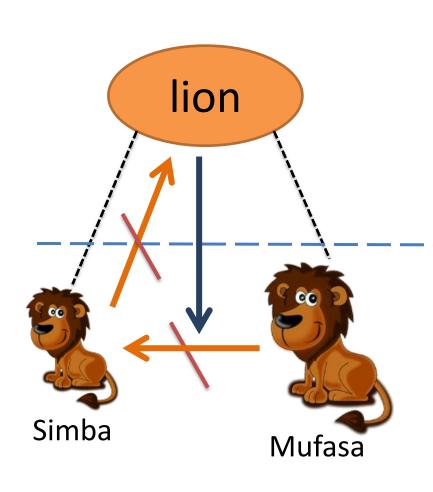
Annotating genericity: a survey, a scheme, and a corpus


Annemarie Friedrich¹, Alexis Palmer², Melissa Peate Sørensen¹ and Manfred Pinkal¹

¹Computational Linguistics, Universität des Saarlandes ²Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart

Reference to kinds

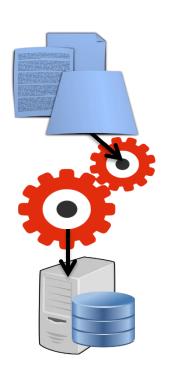

Krifka et al. (1995): Genericity: An Introduction.


non-kind-referring

NPs

Simba escaped from the zoo.

Generic vs. non-generic expressions



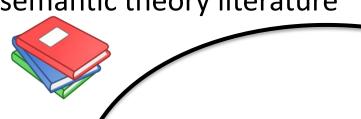
different entailment properties

Lions are dangerous.

Mufasa is dangerous. Simba is dangerous.

Identifying generic expressions: why?

knowledge extraction from text



natural language understanding

Motivation

Survey

existing approaches semantic theory literature

Previously existing corpora

problematic points in annotation guidelines or small data sets

Aim:

computational models for identifying generic expressions

Our corpus / annotation scheme

guidelines motivated by semantic theory large data set

necessary for successful machine learning approaches to genericity identification

NP-level: reference to kinds

		kind-referring	non-kind-referring	
NP not sufficient	definite NPs	The lion is a predatory cat.	The cat chased the mouse.	
	indefinite NPs	<u>Lions</u> eat meat.	<u>Dogs</u> were barking outside.	
	quantified NPs	Some (type of) dinosaur is extinct.	Some dogs were barking outside.	
form of NP	proper names	Panthera leo persica was first described by the Austrian zoologist Meyer.	<u>John</u> likes ice cream.	

Terminology: clause-level genericity

characterizing sentences

	lexically characterizing sentences	habitual sentences	
kind-referring subject	Lions have manes.	Lions eat meat.	
non-kind- referring subject	John is tall.	John drives to work.	

Survey: annotating genericity

Level	Corpus	Scheme	Size
	ACE-2	generic, specific	40K entity mentions
	ACE-2005	GEN, SPC, USP, NEG	40K entity mentions
	ECB+	GEN, non-GEN	12.5K entity mentions
NP	GNOME	generic-yes, generic-no	900 clauses
	Herbelot & Copestake	ONE, SOME, MOST, ALL, QUANT	300 subject mentions
	CFD (Bhatia et al.)	GENERIC_KIND, GENERIC_INDIVIDUAL	3422 NPs (131 generic)
	Mathew & Katz	habitual, episodic	1052 sentences
clause	Louis & Nenkova	general, specific	894 sentences
NP, clause	MASC WikiGenerics	GEN_gen, NON-GEN_gen, NON-GEN non-gen	20k clauses 10k clauses
Clause	VVIKIGEHEIICS	TION GEN_HOH-8CH	TOR Clauses

Survey: clause-level annotations

[Mathew & Katz 2009]

episodic *John has finished the cake.*

vs. **habitual** John drives to work. (regularity)

[Louis & Nenkova 2011]

general sentences vs. **specific** sentences

≠ genericity as treated in literature

"broad statements about a topic"

A handful of serious attempts have been made to eliminate diseases.

vs. "detailed information"

Solid silicon compounds are already familiar – as rocks, glass, ...

Survey: NP-level annotations

[Nedoluzhko 2013]

coreference resolution research

no consistent definition

ignore generic entity mentions? avoid mixed chains?

GNOME corpus: generic-yes, generic-no

[Herbelot & Copestake 2009/2011]

Cats are mammals. ALL cats

<u>Cats</u> have four legs. MOST cats

<u>Cats</u> are black. SOME cats

<u>A cat</u> chased the mouse. ONE cat

[Bhatia et al. 2014]

GENERIC_KIND_LEVEL

Dinosaurs are extinct.

GENERIC INDIVIDUAL LEVEL

Cats have fur.

ACE entity class annotations

Automatic Content Extraction (2002-2008)

- largest corpora annotated with NP-level genericity to date
- basis for computational modeling [Reiter & Frank 2010]

ACE-2005:

GEN kind-referring

SPC non-kind-referring

NEG negatively quantified NPs

There are <u>no confirmed suspects</u> yet.

USP underspecified ambiguous cases

There are new opportunities for women in New Delhi. and mentions of entities "whose identity would be difficult to locate"

Officials reported ...

ACE-2005: agreement study

annotations available from LDC agreement study:

exactly-matching entity mention spans (~90%)

	Υ
	adjudication
*574	
	↓
7 6	final corpus

news, broadcast news, broadcast conversation, forum and weblog texts

		annotator 2			
		SPC	USP	GEN	NEG
. 1	SPC	28168	1575	684	3
ator	USP	1142	1954	963	2
annotator 1	GEN	757	1261	1707	10
an	NEG	8	5	7	71

Cohen's $\kappa = 0.53$ confusion of SPC/GEN with USP is high

ACE-2005: agreement study

Problems of the ACE annotation guidelines

- predicative uses are marked
 - John is <u>a nice person</u>. (specific)
 - John seems to be a nice person. (generic)
- noun modifiers in compounds (9.5% of all mentions)
 are marked as generic: <u>subway</u> system

nonreferential

- guidelines mix genericity and specificity
 (specificity = speaker has a particular referent in mind)
 - Officials reported...
 - not underspecified: not generic, but nonspecific

Our approach: motivation

Previous approaches:

range / mix of linguistic phenomena, focus on applications many linguistically motivated schemes, but small corpora

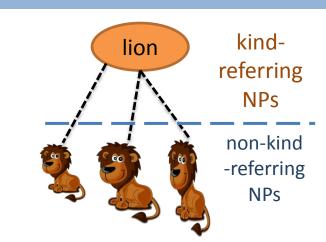
Our approach:

motivated by **semantic theory** (Krifka et al. 1995) study references to and statement about kinds (Task NP, Task Cl, Task Cl+NP) (other aspects of genericity → future work)

contribution of clauses to **discourse**:

characterizing statements ≠ particular events or states

relevant for processing temporal structure of discourse 14


Task NP: genericity of subject

generic: references to kind / class

The lion is a predatory cat.

Lions have manes.

A lion may eat up to 30kg in one sitting.

non-generic: references particular individual(s)

Simba flees into exile.

A lion must have eaten the rabbit. (nonspecific)

Task CI: genericity of clause

generic: characterizing statements about kinds subject must be **generic**.

The lion is a predatory cat.

Lions eat up to 30kg in one sitting. (habitual)

non-generic: statements about particular individuals or particular events.

John is a nice guy.

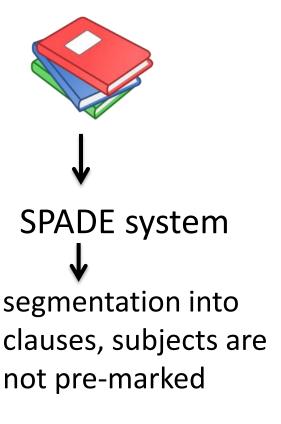
John cycles to work. (habitual)

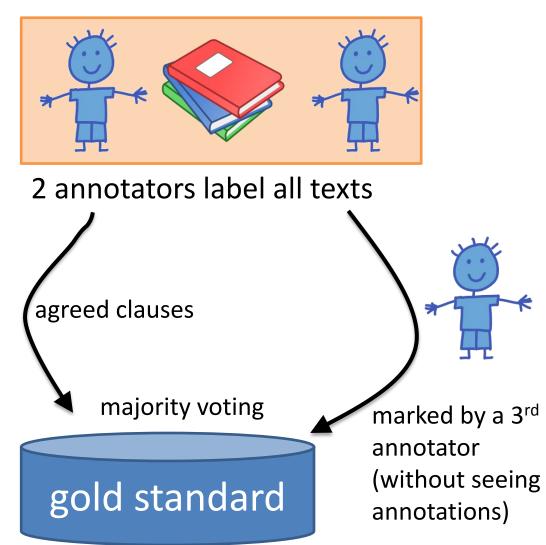
Task Cl+NP: clause and subject

clause	generic	non-generic
generic	<u>Lions</u> have manes. <u>Lions</u> eat meat.	The blobfish was voted the "World's Ugliest Animal". <u>Dinosaurs</u> died out.
non-generic		John is a nice guy. John cycles to work.

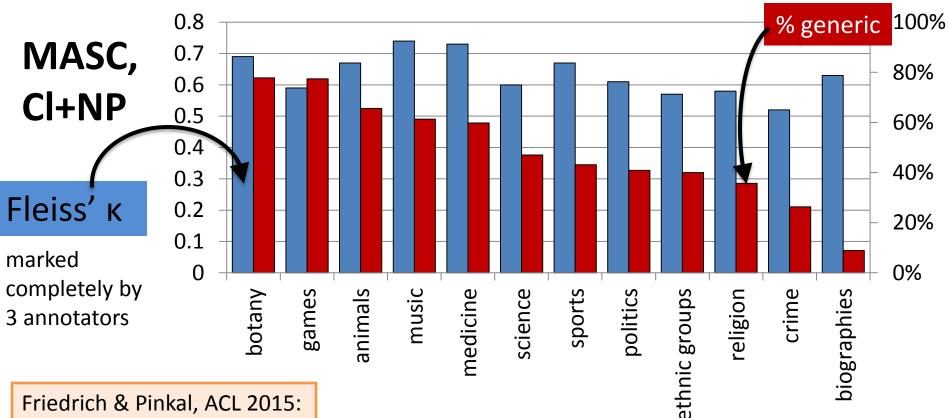
Corpus data

Manually Annotated Subcorpus of the Open American National Corpus (MASC)


- essays, travel, letters, journal, jokes, blog, news, fiction
- 20136 clauses


102 Wikipedia texts (WikiGenerics)

- aim: balanced corpus (many generics)
- about animals, sports, politics, science, biographies, ...
- 10279 clauses

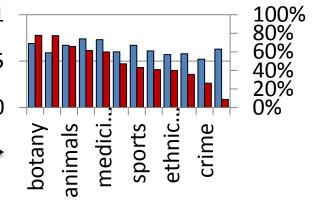

Annotation process

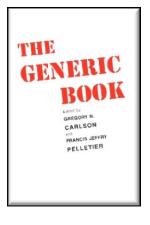
- 1) <u>Lions</u> are big cats
- 2) and eat meat.

Inter-annotator agreement: WikiGenerics

Discourse-sensitive Automatic Identification of Generic Expressions.

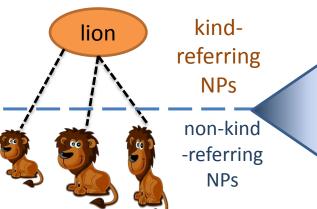
Task NP	Task Cl	Task CI+NP	% generic
0.69	0.72	0.68	50.1%


balanced corpus, substantial agreement


survey & our corpus:

moderate substantial

interpretation in relation to label distribution


linguistically motivated 3-way annotation scheme: NP, Cl, Cl+NP

Annotating genericity

MASC, WikiGenerics
balanced
substantial agreement

www.coli.uni-saarland.de/projects/sitent

<u>Students of Saarland</u> <u>university</u> have lunch at mensa.

extensional (non-generic) vs. intensional (generic) reading

redefine USP label?

study related phenomena (e.g. habitual sentences)

extend to other languages

Thank you

Alexis Palmer

Melissa Peate Sørensen

Manfred Pinkal

Questions?

www.coli.uni-saarland.de/projects/sitent

References

ACE corpora: https://www.ldc.upenn.edu/collaborations/past-projects/ace

Bhatia, A. et al. **Automatic classification of communicative functions of definiteness**. (2014). In *Proceedings of COLING*, pp. 1059-1070. Dublin, Ireland.

Friedrich, A. & Pinkal, M. (2015). **Discourse-sensitive Automatic Identification of Generic Expressions**. In *Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (ACL)*. Beijing, China. (to appear)

Krifka, M. et al. (1995). **Genericity: an introduction**. *The Generic Book*, 1-124. University of Chicago Press.

Herbelot, A., & Copestake, A. (2010). **Annotating underquantification**. In *Proceedings of the Fourth Linguistic Annotation Workshop* (pp. 73-81). Association for Computational Linguistics.

Herbelot, A., & Copestake, A. (2011). **Formalising and specifying underquantification**. In *Proceedings of the Ninth International Conference on Computational Semantics*. Assocation for Computational Linguistics.

References (ctd)

Ide, N., Baker, C., Fellbaum, C., & Fillmore, C. (2008). **MASC: The manually annotated sub-corpus of American English.** In *In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC)*.

Louis, A., & Nenkova, A. (2011). **Automatic identification of general and specific sentences by leveraging discourse annotations.** In *IJCNLP 2011* (pp. 605-613).

Mathew, T. and Katz, G. (2009). Supervised Categorization of Habitual and Episodic Sentences. In *Sixth Midwest Computational Linguistics Colloquium*. Bloomington, Indiana: Indiana University.

Nedoluzhko, A. (2013). **Generic noun phrases and annotation of coreference and bridging relations in the Prague Dependency Treebank**. *LAW VII & ID*.

Poesio, M. (2004). **Discourse annotation and semantic annotation in the GNOME corpus**. In *Proceedings of the 2004 ACL Workshop on Discourse Annotation* (pp. 72-79). Association for Computational Linguistics.

Reiter, N., & Frank, A. (2010, July). Identifying generic noun phrases. In *Proceedings of ACL* (pp. 40-49). Association for Computational Linguistics.

Soricut, R., & Marcu, D. (2003). **Sentence level discourse parsing using syntactic and lexical information.** ACL-HLT. (pp. 149-156). Association for Computational Linguistics.