

Automatic identification of generic expressions

Annemarie Friedrich afried@coli.uni-saarland.de

joint work with Alexis Palmer, Melissa Peate Sørensen and Manfred Pinkal

Computational Linguistics, Universität des Saarlandes

JUNE 2015. IBM T.J. WATSON RESEARCH CENTER, YORKTOWN HEIGHTS, NY.

Generic vs. non-generic expressions

different entailment properties

Lions are dangerous.

<u>Mufasa</u> is dangerous. <u>Simba</u> is dangerous.

Identifying generic expressions: why?

knowledge extraction from text

natural language understanding

How? Discourse context matters

Previous work (Reiter & Frank 2010): classification of noun phrases (in isolated sentences)

- a) <u>Sugar maples</u> also have a tendency to color unevenly in fall. *(generic)*
- b) <u>The recent year's growth twigs</u> are green and turn dark brown. *(generic)*

Discourse-sensitive approach (Friedrich & Pinkal 2015): sequence labeling task classification of (subject) noun phrases & clauses

Overview of talk

Terminology: reference to kinds

NP-level: reference to kinds

ot sufficient	
bu	
NP	
of	
orm	

	kind-referring	non-kind-referring
definite NPs	<u>The lion</u> is a predatory cat.	<u>The cat</u> chased the mouse.
indefinite NPs	<u>Lions</u> eat meat.	<u>Dogs</u> were barking outside.
quantified NPs	<u>Some (type of) dinosaur</u> is extinct.	<u>Some dogs</u> were barking outside.
proper names	<u>Panthera leo persica</u> was first described by the Austrian zoologist Meyer.	<u>John</u> likes ice cream.

clause / context matters

Terminology: clause-level genericity

characterizing sentences

generalizations over situations

	lexically characterizing sentences	habitual sentences
kind-referring subject	Lions have manes.	Lions eat meat.
non-kind- referring subject	John is tall.	John drives to work.

Terminology: clause-level genericity

characterizing sentences

generalizations over situations

	lexically characterizing sentences	habitual sentences
kind-referring subject	Lions have manes.	Lions eat meat.
non-kind- referring subject	John is tall.	John drives to work.

Generic sentences

- The term is used for various (NP- and clauselevel) phenomena.
- Generic sentences are not rendered false by the existence of counter-examples.

Lions eat meat.

The lion in our zoo is weird, though, it only eats vegetables.

Related Work

ACE corpora

- Automatic Content Extraction (2002-2008)
- largest corpora annotated with NP-level genericity to date, ~40k NPs
- Reiter & Frank (ACL 2010):

"Identification of generic noun phrases"

- use a variety of NP-based and clause-based features
- Bayesian network (Weka)

ACE entity class annotations

ACE-2:

generic = "any member of the set in question"

specific = "some particular, identifiable member of that set"

ACE-2005:

- **GEN** = kind-referring
- **SPC** = non-kind-referring
- **NEG** = negatively quantified NPs

There are <u>no confirmed suspects</u> yet.

USP = underspecified: ambiguous cases

There are new opportunities for <u>women in New Delhi</u>. and mentions of entities "whose identity would be difficult to locate": <u>Officials</u> reported ...

ACE-2005: agreement study

news, broadcast news, broadcast conversation, forum and weblog texts

annotations available from LDC agreement study:

exactly-matching entity mention spans (~90%)

		annotator 2			
		SPC USP GEN NEG			
, e	SPC	28168	1575	684	3
ator	USP	1142	1954	963	2
not	GEN	757	1261	1707	10
an	NEG	8	5	7	71

Cohen's κ = 0.53

confusion of SPC/GEN with USP is high

Problems of the ACE annotation guidelines

guidelines mix genericity and specificity

(specificity = speaker has a particular referent in mind)

- <u>Officials</u> reported...
- this is not underspecified: it is not generic, but nonspecific

WikiGenerics corpus

102 Wikipedia texts

about animals, sports, politics, science, biographies, ... 10279 clauses, aim: balanced corpus (many generics)

Annotation scheme

motivated by **semantic theory** (Krifka et al. 1995) study references to and statement about kinds (Task NP, Task Cl, Task Cl+NP) (other aspects of genericity → future work)

Task NP: genericity of subject

generic: references to kind / class

<u>The lion</u> is a predatory cat.

Lions have manes.

<u>A lion</u> may eat up to 30kg in one sitting.

non-generic: references particular individual(s)

Simba flees into exile.

<u>A lion</u> must have eaten the rabbit. (nonspecific) <u>Lions</u> are in this cage.

Task CI: genericity of clause

generic: <u>characterizing</u> statements about kinds subject must be **generic**. *The lion is a predatory cat*.

Lions eat up to 30kg in one sitting. (habitual)

non-generic: statements about particular individuals or particular events.

John is a nice guy.

John cycles to work. (habitual)

Task CI+NP: clause and subject

clause subject	generic	non-generic
generic	<u>Lions</u> have manes. <u>Lions</u> eat meat.	<u>The blobfish</u> was voted the "World's Ugliest Animal". <u>Dinosaurs</u> died out.
non-generic		John is a nice guy. John cycles to work.

habitual vs. other types of clauses: future work!

Annotation process

Inter-annotator agreement: WikiGenerics

balanced corpus, substantial agreement

Computational model

Linear-chain Conditional Random Field

Linear-chain Conditional Random Field

Discriminative training (maximum likelihood, CRF++ toolkit uses L-BGFS)₂₃

Features [see Reiter & Frank 2010]

extracted from dependency parses (Stanford parser)

NP-based features			
number	sg, pl		
person	1,2,3		
countability	Celex: count, uncount,		
noun type	common, proper, pronoun		
determiner type	def, indef, demon		
part-of-speech	POS of head		
bare plural	true, false		
WordNet based features	senses, lexical filename,		

Clause-based features			
dependency relations	between (subject) head and governor etc.		
tense	past, present, future		
progressive	true, false		
perfective	true, falce		
voice	active, passive		
part-of-speech	POS of head		
temporal modifier	true, false		
number of modifiers	numeric		
predicate	lemma of head		
adjunct-degree	positive, comparative, superlative		

Results on ACE data: NP-level

ACE-2: SPC, GEN

System	F1	Acc.
majority class	46.5	86.8
Bayes Net (R&F)	69.8	80.4
CRF (unigram)	71.3	88.5*
CRF (bigram)	72.4	88.9*
CRF (bigram, gold)	76.0	90.1

*difference statistically significant

ACE-2005 (subject mentions) SPC, GEN, USP			
System	F1	Acc.	
majority class	28.6	75.1	
Bayes Net (R&F)	52.7	72.5	
CRF (unigram)	53.6	77.7*	
CRF (bigram)	53.7	77.8	
CRF (bigram, gold)	58.6	79.6*	

Our model outperforms previous work. Gold information → discourse helps. Few generic instances, problems in annotation guidelines.

WikiGenerics Task NP: genericity of subject

<u>The lion</u> is a predatory cat. <u>Simba</u> had to flee. (generic) (non-generic)

System	Macro-avg. F1	Accuracy	
majority class	35.9	56.1	
Bayes Net (R&F)	72.3	71.7	
CRF (unigram)	75.9	76.4	discourse
CRF (bigram)	78.8	79.1 🔺) information
CRF (bigram, gold)	82.7	83.0	\sim \mathcal{N}

WikiGenerics Task CI: genericity of clause

The lion is a predatory cat. Simba had to flee.

(generic) (non-generic)

System	Macro-avg. F1	Accuracy	
majority class	35.1	43.7	discourso
Bayes Net (R&F)	73.7	73.5	information
CRF (unigram)	77.4	77.4 -	
CRF (bigram)	80.7	80.7	
CRF (bigram, gold)	82.8	82.8	

WikiGenerics Task CI+NP: three-way task

The lion is a predatory cat. Simba had to flee. The blobfish was voted the most ugly animal of the world. (CLAUSE_subject) (GEN_gen) (NON-GEN_non-gen) (NON-GEN_gen)

System	Macro-avg. F1	Accuracy	
majority class	22.4	50.4	discourse
Bayes Net (R&F)	56.4	65.2	
CRF (unigram)	63.4	74.0 -	
CRF (bigram)	65.8	77.4	
CRF (bigram, gold)	69.0	80.6	

Feature set ablation

	Accuracy		
System	Task NP	Task Cl	Task Cl+NP
CRF (bigram)	79.1	80.7	77.4
- clause features only	76.0	78.8	74.3
- NP features only	74.1	71.7	70.0

It strongly depends on clause whether an NP is interpreted as generic or not.

Markov order

What happens if we take more than the immediately preceding label into account?

Mallet toolkit

- using only the preceding label is optimal
- labels of non-adjacent clauses *do* influence each (score is optimized for entire sequence)

Conclusions

We classify NPs and clauses with regard to their genericity.

WikiGenerics corpus

balanced substantial agreement

CRF finds **optimal label sequence** for clauses of a document, combining information from clause and surrounding labels

discourse information matters!

Future work

- Genericity of NPs other than the subject
 - annotation + automatic classification
 - Cats chase mice.
- Related linguistic phenomena
 - habitual vs. episodic sentences
 - John cycled to work today.
 - John cycles to work.
- Integration into applications

Thank you

Alexis Palmer

Melissa Peate Sørensen

Manfred Pinkal

Questions?

www.coli.uni-saarland.de/projects/sitent

The bigger picture

Annotation and automatic classification of situation entity types

Discourse modes [Smith 2003]

Modes of discourse [Smith 2003]

Different passages of a text can have different discourse modes.

one text ≈ one genre

one text ≠ one discourse mode

Modes of discourse [Smith 2003]

temporal progression

temporal progression

temporal / spatial progression

metaphorical progression

Modes of discourse [Smith 2003]: Situation entity types

EVENT, STATE

EVENT, STATE, general statives

EVENT, STATE, ongoing EVENT

FACT, PROPOSITION, general statives

Situation entity types

Eventualities	STATE	Mary likes cats.
	EVENT	Mary fed the cats.
	- REPORT	, Mary said.
General Statives	GENERALIZING SENTENCE	Mary often feeds my cats.
	GENERIC SENTENCE	Cats are always hungry.
Abstract Entities	FACT	I know <u>that Mary fed the cats</u> .
	PROPOSITION	I believe <u>that Mary fed the cats</u> .
Speech Acts	QUESTION	Does Mary like cats?
	IMPERATIVE	Don't forget to feed the cats!

Motivation

Annotation of large data set (MASC)

computational modeling

assess the applicability of SE type classification as described by Smith [2003] borderline cases? human agreement?

training, development, evaluation of automatic systems for classifying SEs and related tasks: improve temporal discourse processing

Features & SE types

Feature: fundamental aspectual class

The glass **was filled** with juice. **BOTH readings possible** She **filled** the glass with juice. **DYNAMIC**

Summary

- generics: distinguish GENERIC SENTENCES from other situation entity types
 [Friedrich & Pinkal 2015]
- **lexical aspectual class**: distinguish STATES and EVENTS [Friedrich & Palmer 2014]
- habituals: work in progress
- full classification task: work in progress

References

ACE corpora: https://www.ldc.upenn.edu/collaborations/past-projects/ace Friedrich, A. & Palmer, A (2014). Automatic prediction of aspectual class of verbs in context. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL). Baltimore, USA

Friedrich, A. & Pinkal, M. (2015). **Discourse-sensitive Automatic Identification of Generic Expressions**. In *Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (ACL)*. Beijing, China. *(to appear)*

Krifka, M. et al. (1995). **Genericity: an introduction**. *The Generic Book*, 1-124. University of Chicago Press.

Ide, N., Baker, C., Fellbaum, C., & Fillmore, C. (2008). MASC: The manually annotated sub-corpus of American English. In *In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC*).

Reiter, N., & Frank, A. (2010, July**). Identifying generic noun phrases.** In *Proceedings* of ACL (pp. 40-49). Association for Computational Linguistics.

Soricut, R., & Marcu, D. (2003). Sentence level discourse parsing using syntactic and lexical information. ACL-HLT. (pp. 149-156). Association for Computational Linguistics.