Situation entity types: automatic classification of clause-level aspect

Annemarie Friedrich¹

Alexis Palmer² Manfred Pinkal¹

¹Saarland University

²Heidelberg University / University of North Texas ACL 2016, Berlin, Germany

What is clause-level aspect?

aspect = how a situation is presented [Smith 1997]

	state:	The ship is in motion.
[Vendler 1957, Bach 1986]: aktionsart	event:	The ship moved.
artionsart	process:	The ship is moving.

[Krifka et al. 1995]:John cycles to work.habituals / genericityStudents like coffee.

Why model these?

- understand temporal relations in discourse
- distinguish between / extract different types of knowledge

What are situation entity types?

inventory of aspectual clause types motivated by a theory of discourse [Smith 2003]

Situation entity types

STATE	Julie li	ikes Cooper.	
	Julie c	did not kill the mouse.	
EVENT	Julie r	net Cooper two years ago.	
REPORT	, sai	d the zookeeper.	
GENERIC	Owle	are nocturnal animals	
SENTENCE	E	are noclumar animais.	
GENERALI	ZING Lulio (often teases Cooper	
SENTENCE		men leases ooopei.	
IMPERATIV	E Catch	the mouse!	
	Why a	are there owls on your slides?	
ABSTRACT	ABSTRACT ENTITIES \rightarrow see paper		

What we show in this paper

- first large reliably annotated corpus for situation entity types (40,000 clauses), 13 genres
- use of distributional information (Brown clusters) to make approach robust + scalable
 45% (informed baseline) - 76% (system) - 80% (humans)
- sequence labeling method (CRF) vs. local method (MaxEnt): small impact, depending on genre

Related work

- modeling of Vendler classes
 - state, activity, accomplishment, achievement
 - ▶ Italian [Zarcone & Lenci, 2008], German [Hermes et al., 2015]
 - stative vs. dynamic [Siegel & McKeown, 2000], [Friedrich & Palmer, 2014a]
 - completedness [Siegel & McKeown, 2000]
- modeling genericity
 - identifying genericity of NPs / reference to kinds [Reiter & Frank, 2010], [Friedrich & Pinkal, 2015b]
 - recognizing habituals
 [Mathew & Katz, 2009], [Friedrich & Pinkal, 2015a]
- labeling situation entities [Palmer et al. 2007]
 - maximum entropy model, features: pos tags, words, linguistic
 - data set: 20 texts / 4391 clauses, Brown corpus, $\kappa = 0.52$

Data collection: MASC / Wiki corpus

- ► \approx 30,000 clauses from MASC [Ide et al. 2010] + \approx 10,000 clauses from Wikipedia
- automatically segmented using SPADE [Soricut & Marcu, 2003]
- \blacktriangleright 3 annotators \rightarrow majority voting \rightarrow gold standard

	% in gol	d standard	Fleiss' κ
Situation entity type	MASC	Wiki	Krippendorff's diagnostics
STATE	49.8	24.3	0.67
Event	24.3	18.9	0.74
Report	4.8	0.9	0.80
Generic	7.3	49.7	0.68
GENERALIZING	3.8	2.5	0.43
QUESTION	3.3	0.1	0.91
IMPERATIVE	3.2	0.2	0.94
undecided	2.4	2.1	-

Conditional random field (CRF)

- text document
 sequence of clauses
- \vec{y} = sequence of situation entity type labels
- \vec{x} = features representing the clauses
- λ_i = weight for feature x_i
- ► $f_i(y_j, x_j)$ = clause / type → MaxEnt
- $f_i(y_{j-1}, y_j) = \text{type } / \text{type}$ $\rightarrow \text{CRF}$

$$\mathsf{P}(\vec{y}|\vec{x}) = \frac{1}{Z(\vec{x})} exp(\sum_{j=1}^{n} \sum_{i=1}^{m} \lambda_i f_i(y_{j-1}, y_j, \vec{x}, j))$$

Situation entity types

Which parts of the clause are most important to distinguish the types? [Friedrich & Palmer 2014b], [Friedrich et al. 2015], [Smith 2003]

Main verb	\rightarrow verb that heads the clause	
	Julie likes Cooper.	STATE
	Julie met Cooper.	Event
	Julie teases Cooper.	GENERALIZING SENTENCE
Main referent	\rightarrow subject of main verb	
	Julie is an owl.	STATE
	Owls are nocturnal animals.	GENERIC SENTENCE

Features for clauses

- pos: part of speech tags
- bc: Brown word clusters pretrained Turian et al. 2010

mv: main verb

tense, voice, progressive, perfect, lemma, WordNet hypernyms ...

mr: main referent

lemma, determiner type, noun type, number, person, countability, WordNet, dependency relations ...

cl: clause

adverbs, conditional, modal, negated, ...

How well does it work?

Results: impact of different feature sets

Accuracy. Wiki+MASC dev set (80% of data), CRF, 10-fold CV.

Results on heldout test set (20% of data)

Training on entire MASC+Wiki dev set.

	macro-average			
feature set	Р	R	F	accuracy
maj. class (STATE)	6.4	14.3	8.8	44.7
pos+Brown	67.6	60.6	63.9	69.8
mr+mv+cl	69.9	61.7	65.5	71.4
all	73.4	65.5	69.3	74.7

Ablation tests tell same story \rightarrow see paper

13

Pipelined model?

STATE, EVENT, GENERIC SENTENCE, GENERALIZING SENTENCE

Is sequential information important?

As claimed by Palmer et. al [2007]

... and if yes, when?

Maximum entropy model vs. conditional random field

SE type	MaxEnt	CRF
STATE	79.1	80.6
Event	77.5	78.6
Report	78.2	78.9
GENERIC	61.3	68.3
GENERALIZING	25.0	29.4
IMPERATIVE	72.3	75.3
QUESTION	84.4	84.4
macro-avg F1	68.7	71.2
accuracy	*74.1	*76.4

* statistically significant

How genre-dependent is this task?

Siction jokes govt-does Wikipedia, technical, journal blog letters email ficlets trave

- ► How important is it to have in-genre training data? helpful, ≈ +5% accuracy/F₁
- ► Is it a good idea to add out-of-genre / domain training data? **YES!** 49.0 \rightarrow 64.0 (macro-average F_1) system gets better at identifying infrequent types
- Statistics per type / genre \rightarrow see paper

17

Lessons learned

- situation entity type classification task is difficult even for humans
- system performs well when comparing to human upper bound (76% vs. 80%)
- our system performs well across genres
- ► some types are infrequent in particular genres → adding out-of-domain training data helps to identify them
- a wide range of syntactic-semantic features are useful for this task
- sequential information useful for identifying 'generic contexts'

What next?

- integration of aspectual information into applications
 - temporal relation processing, argumentation mining, information extraction, translation
 - distinguishing different 'modes' of discourse (NARRATIVE, INFORMATION, REPORT, DESCRIPTION, ARGUMENTATIVE [Smith 2003])
- modification of situation entity types inventory
 - set of types by Smith [2003] possibly too coarse-grained

Thanks!

Ambika Kirkland – Christine Bocionek – Damyana Gateva – Fernando Ardente – Kleio-Isidora Mavridou – Melissa Peate Sørensen – Ruth Kühn

http://coli.uni-saarland.de/projects/sitent

"Burrowing owl" by kuhnmi / CC BY 2.0

http://coli.uni-saarland.de/projects/sitent

References

Emmon Bach. 1986. The algebra of events. Linguistics and philosophy 9(1):5–16.

- Annemarie Friedrich and Alexis Palmer. 2014a. Automatic prediction of aspectual class of verbs in context. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL). Baltimore, USA.
- Annemarie Friedrich and Alexis Palmer. 2014b. Situation entity annotation. In Proceedings of the Linguistic Annotation Workshop VIII.
- Annemarie Friedrich, Alexis Palmer, Melissa Peate Sørensen, and Manfred Pinkal. 2015. Annotating genericity: a survey, a scheme, and a corpus. In Proceedings of the 9th Linguistic Annotation Workshop (LAW IX). Denver, Colorado, US.
- Annemarie Friedrich and Manfred Pinkal. 2015a. Automatic recognition of habituals: a three-way classification of clausal aspect. In Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP). Lisbon, Portugal.
- Annemarie Friedrich and Manfred Pinkal. 2015b. Discourse-sensitive Automatic Identification of Generic Expressions. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (ACL). Beijing, China.
- Jürgen Hermes, Michael Richter, and Claes Neuefind. 2015. Automatic induction of German aspectual verb classes in a distributional framework. In Proceedings of the International Conference of the German Society for Computational Linguistics and Language Technology (GSCL).
- Nancy Ide, Collin Baker, Christiane Fellbaum, and Charles Fillmore. 2008. MASC: The manually annotated sub-corpus of American English.
- Manfred Krifka, Francis Jeffrey Pelletier, Gregory N. Carlson, Alice ter Meulen, Godehard Link, and Gennaro Chierchia. 1995. Genericity: An Introduction. The Generic Book, pages 1–124.

- Thomas A. Mathew and Graham E. Katz. 2009. Supervised categorization for habitual versus episodic sentences. In Sixth Midwest Computational Lingustics Colloquium. Indiana University, Bloomington, Indiana.
- Alexis Palmer, Elias Ponvert, Jason Baldridge, and Carlota Smith. 2007. A sequencing model for situation entity classification. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics.
- Nils Reiter and Anette Frank. 2010. Identifying Generic Noun Phrases. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Uppsala, Sweden.
- Eric V Siegel and Kathleen R McKeown. 2000. Learning methods to combine linguistic indicators: Improving aspectual classification and revealing linguistic insights. Computational Linguistics 26(4):595–628.
- Smith, Carlota. 1997. The parameter of aspect. Studies in Linguistics and Philosophy 43 (1991).
- Carlota S Smith. 2003. Modes of discourse: The local structure of texts, volume 103. Cambridge University Press.
- Radu Soricut and Daniel Marcu. 2003. Sentence level discourse parsing using syntactic and lexical information. In Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology.
- Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word representations: a simple and general method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics.
- > Zeno Vendler. 1957. Verbs and times. The philosophical review pages 143–160.
- Alessandra Zarcone and Alessandro Lenci. 2008. Computational models of event type classification in context. In Proceedings of LREC2008.