Introduction	Related work	Data	Method	Experiments	Conclusions

Automatic prediction of aspectual class of verbs in context (ACL 2014)

Annemarie Friedrich & Alexis Palmer

afried,apalmer@coli.uni-saarland.de Department of Computational Linguistics Saarland University

University of Edinburgh, May 6th, 2014

Introduction	Related work	Data	Method	Experiments	Conclusions

Stative and dynamic meanings of verbs in context

The juice **fills** the glass. *(stative)* 'something is the case'

Introduction	Related work	Data	Method	Experiments	Conclusions

Stative and dynamic meanings of verbs in context

The juice fills the glass. (stative) 'something is the case'

She **filled** the glass with juice. (dynamic) 'something happens'

Ambiguous verb types: sometimes both readings are available

The glass was **filled** with juice. *(both readings)*

Introduction	Related work	Data	Method	Experiments	Conclusions

Why predict aspectual class?

- aspectual class of a discourse's finite verbs
 - = important factor in conveying / interpreting temporal structure (e.g. Moens & Steedman 1998)
 - (other factors: tense, grammatical aspect, mood, completedness)

Introduction	Related work	Data	Method	Experiments	Conclusions

Why predict aspectual class?

- aspectual class of a discourse's finite verbs
 - = important factor in conveying / interpreting temporal structure (e.g. Moens & Steedman 1998)
 - (other factors: tense, grammatical aspect, mood, completedness)

V

improve temporal information processing: improve many NLP tasks / computational semantics approaches (e.g. Lewis & Steedman 2014)

Introduction	Related work	Data	Method	Experiments	Conclusions

Why predict aspectual class?

- aspectual class of a discourse's finite verbs
 - = important factor in conveying / interpreting temporal structure (e.g. Moens & Steedman 1998)
 - (other factors: tense, grammatical aspect, mood, completedness)

\mathbb{V}

improve temporal information processing: improve many NLP tasks / computational semantics approaches (e.g. Lewis & Steedman 2014)

one factor in determing situation entity type (Smith 2003)
 more on this later

Related work	Data	Method	Experiments	Conclusions

Aspectual class: linguistic literature

• Vendler (1957): time schemata of English verbs (*lexical aspect*)

states	love, own	STATIVE
activities	run, write letters	
accomplishments	run a mile, write a letter	DYNAMIC
achievements	realize, cross the border	

Related work	Data	Method	Experiments	Conclusions

Aspectual class: linguistic literature

• Vendler (1957): time schemata of English verbs (*lexical aspect*)

states	love, own	STATIVE
activities	run, write letters	
accomplishments	run a mile, write a letter	DYNAMIC
achievements	realize, cross the border	



Related work	Data	Method	Experiments	Conclusions

Fundamental aspectual class

Fundamental aspectual class

- = a clause's aspectual class when ignoring any aspectual markers / transformations (following Siegel & McKeown 2000)
- = a function of the main verb + a select group of arguments (which may differ per verb)

	Related work	Data	Method	Experiments	Conclusions

Fundamental aspectual class

Fundamental aspectual class

- = a clause's aspectual class when ignoring any aspectual markers / transformations (following Siegel & McKeown 2000)
- = a function of the main verb + a select group of arguments (which may differ per verb)

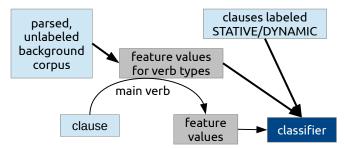
Example

John has kissed Mary.

- English perfect \rightarrow stative (Smith 1991, Katz 2003)
- fundamental aspectual class: John kiss Mary \rightarrow DYNAMIC

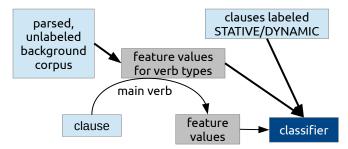
Related work	Data	Method	Experiments	Conclusions

Type-based approaches



Related work	Data	Method	Experiments	Conclusions

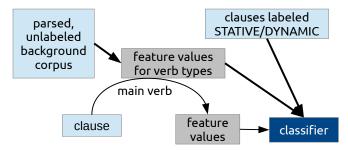
Type-based approaches



Klavans & Chodorow (1992): degrees of stativity
 ≈ tendencies of use are collected for verb types from corpus (progressive as indicator)

Related work	Data	Method	Experiments	Conclusions

Type-based approaches

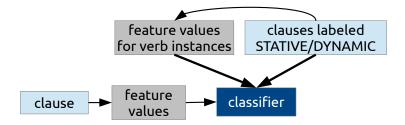


- Klavans & Chodorow (1992): degrees of stativity
 ≈ tendencies of use are collected for verb types from corpus (progressive as indicator)
- Siegel & McKeown (2000): linguistic indicators, did not beat most-frequent-class baseline → main inspiration

	Related work	Data	Method	Experiments	Conclusions

Instance-based approaches

- Siegel (1998): using direct object of have
- TempEval challenges: event extraction & classification wide range of corpus-based and syntactic-semantic features (e.g. Jung & Stent (2013), Bethard (2013), Chambers (2013)) Costa & Branco (2013): aspectual features, Portuguese



	Related work	Data	Method	Experiments	Conclusions
Contribu	tion				

Automatic prediction of aspectual class of verbs in context

 $\ensuremath{\textcircled{}}$ creation & analysis of corpora for this task

	Related work	Data	Method	Experiments	Conclusions
Contribu	tion				

Automatic prediction of aspectual class of verbs in context

- ① creation & analysis of corpora for this task
- are type-based features sufficient? (no)

	Related work	Data	Method	Experiments	Conclusions
Contribu	tion				

Automatic prediction of aspectual class of verbs in context

- $\ensuremath{\textbf{0}}$ creation & analysis of corpora for this task
- are type-based features sufficient? (no)
- € do type-based features generalize over verb types? (yes)

	Related work	Data	Method	Experiments	Conclusions
Contribu	tion				

Automatic prediction of aspectual class of verbs in context

- $\ensuremath{\textbf{0}}$ creation & analysis of corpora for this task
- are type-based features sufficient? (no)
- € do type-based features generalize over verb types? (yes)
- when are instance-based features helpful? (for ambiguous verbs)

	Related work	Data	Method	Experiments	Conclusions
Asn-MAS	50				

• 7875 clauses from the Manually Annotated SubCorpus (MASC) of OANC (Ide et al. 2010): *jokes, letters, news* annotated for aspectual class (main verb)

Example

	He assured her	DYNAMIC	
	that it was nonsense,	STATIVE	
	but that Gailhaguet " knows my name very well –	STATIVE	
-		(NYTnews)	wire2)

Introduction	Related work	Data	Method	Experiments	Conclusions
Asp-MAS	5C				

• 7875 clauses from the Manually Annotated SubCorpus (MASC) of OANC (Ide et al. 2010): *jokes, letters, news* annotated for aspectual class (main verb)

Ex	ample		
	He assured her	DYNAMIC	
	that it was nonsense,	STATIVE	
	but that Gailhaguet " knows my name very well –	STATIVE	
		(NYTnews)	wire2)

- segmentation into clauses: SPADE discourse parser (Soricut & Marcu 2006) + heuristic post-processing
- main verb automatically extracted from dependency parses (Stanford parser), exclude *have/be/none*: 6161 clauses
- 2 annotators: agreed cases \rightarrow DYNAMIC, STATIVE, BOTH disagreed cases: \rightarrow BOTH

Related work	Data	Method	Experiments	Conclusions

Asp-MASC: inter-annotator agreement

Cohen's observed unweighted κ							
	compl	ete	w/o have/be/none				
genre	clauses	κ	clauses	κ			
jokes	3462	0.85	2660	0.77			
news	2565	0.79	2075	0.69			
letters	1848	0.71	1444	0.62			
all	7875	0.80	6161	0.70			

· · . 1 , . 1. 1 . .1

Related work	Data	Method	Experiments	Conclusions

Asp-MASC: inter-annotator agreement

Cohen's observed unweighted κ							
	compl	ete	w/o have/be/none				
genre	clauses	κ	clauses	κ			
jokes	3462	0.85	2660	0.77			
news	2565	0.79	2075	0.69			
letters	1848	0.71	1444	0.62			
all	7875	0.80	6161	0.70			

Coloria da se da s

Agreement: findings

- substantial agreement
- 'difficulty': jokes < news < letters
 - jokes \approx narratives, letters \approx persuasive/argumentative \Rightarrow different rhetorical style, more statives in letters

Related work	Data	Method	Experiments	Conclusions

Asp-MASC: annotator preferences

w/o *have/be/none*, confusion matrix:

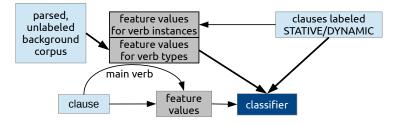
		Annotator 2					
		DYNAMIC	STATIVE	вотн			
or 1	DYNAMIC	4464	164	9			
Annotator	STATIVE	434	1056	29			
Ann	вотн	5	0	0			

Annotator preferences: findings

- on the disagreed cases, annotator 1 prefers STATIVE, annotator 2 prefers DYNAMIC.
- not uncommon (Beigman Klebanov et al. 2008)

Introduction	Related work	Data	Method	Experiments	Conclusions
Method					

- three-way classification task: STATIVE/DYNAMIC/BOTH
- (semi-)supervised learning setting: Random Forest classifier (Breiman 2001)



- three sets of features:
 - Inguistic indicator features (type-based)
 - Ø distributional features (type-based)
 - **3** instance-based features

	Related work	Data	Method	Experiments	Conclusions
Linguistic	c indicators (LingInd)	feature set	(type-base	d)

- idea: linguistic indicators (past/present tense, temporal adverb, in-PP, for-PP...) correlate with stative / dynamic readings (Siegel & McKeown 2000)
- count how often instances of a verb type occur with an indicator in a parsed background corpus
 → we use: Gigaword AFE+XIE, Stanford parser

Example

verb type: fill

feature: temporal-adverb feature value: 0.0085

 \Rightarrow 0.85% of the occurrences of *fill* in the corpus are modified by one of the temporal adverbs on the list compiled by Siegel (1998).

Related work	Data	Method	Experiments	Conclusions

Linguistic indicators (LingInd) feature set (type-based)

Feature	Example		Feature	Example (lists)
frequency	-	•	continuous	continually
present	says		adverb	endlessly
past	said		evaluation	better
future	will say		adverb	horribly
perfect	had won		manner	furiously
progressive	is winning		adverb	patiently
negated	not/never		temporal	again
particle	up/in/		adverb	finally
no subject	-		in-PP	in an hour
			for-PP	for an hour

Loaiciga et al. (2014)

Siegel & McKeown (2000)

	Related work	Data	Method	Experiments	Conclusions
Verb typ	e seed sets				

- Lexical Conceptual Structures (LCS) database of English verbs (Dorr 2001)
- Dorr & Olsen (1997): rules to extract 'dynamicity' feature for verb types – we extract three lists of verbs:

LCS verb type seed sets

- 188 verbs whose entries in LCS are all stative belong, cost, possess,...
- 2 3760 verbs whose entries in LCS are all dynamic alter, knock, resign,...
- **3** 215 verbs that have both stative and dynamic entries in LCS fill, stand, take,...

	Related work	Data	Method	Experiments	Conclusions
Ξ.	 				

Distributional features (type-based)

• idea: use LCS seed lists, but make up for noise / verbs not on list by averaging over distributional similarities

	Related work	Data	Method	Experiments	Conclusions
Distributi	onal features	s (type-b	based)		

- idea: use LCS seed lists, but make up for noise / verbs not on list by averaging over distributional similarities
- **Distributional model** (Thater et al. 2011) trained on part of Gigaword, produces syntactically informed vectors representing contexts in which the verb type occurs.

	Related work	Data	Method	Experiments	Conclusions
Distributi	onal features	s (type-ł	based)		

- idea: use LCS seed lists, but make up for noise / verbs not on list by averaging over distributional similarities
- **Distributional model** (Thater et al. 2011) trained on part of Gigaword, produces syntactically informed vectors representing contexts in which the verb type occurs.

3 numeric features per verb type:

- average cosine similarity with verbs on 'stative' LCS seed list
- $\ensuremath{ 2 \ }$ average cosine similarity with verbs on 'dynamic' LCS seed list
- € average cosine similarity with verbs on 'mixed' LCS seed list

Related work	Data	Method	Experiments	Conclusions

Instance-based features

 extracted from the clause to be classified (tense/progressive/perfect/voice: see Loaiciga et al. (2014))

Feature	Values
part-of-speech tag of the verb	VB, VBG, VBN,
tense	present, past, future
progressive	true/false
perfect	true/false
voice	active/passive
grammatical dependents	WordNet lexname/POS

Example

A little girl had just finished her first week of school.

tense:*past* dobj:*noun.time* perfect:true
subj:noun.person

voice:*active* particle:*none*

Related work	Data	Method	Experiments	Conclusions

Experiments: overview

feature sets

type-based:

- linguistic indicators
- distributional features

instance-based

data

labeled clauses

Related work	Data	Method	Experiments	Conclusions

Experiments: overview

feature sets

type-based:

- linguistic indicators
- distributional features

instance-based

data

labeled clauses

classification settings

verb types SEEN in training data

verb types **UNSEEN** in training data

ONE-LABEL VS. MULTI-LABEL verbs

INSTANCE-BASED classification:

ambiguous verb types

	Related work	Data	Method	Experiments	Conclusions

Experiments: overview

feature sets

type-based:

- linguistic indicators
- distributional features

instance-based

data

labeled clauses

classification settings

verb types SEEN in training data

verb types UNSEEN in training data

ONE-LABEL VS. MULTI-LABEL verbs

INSTANCE-BASED classification:

ambiguous verb types

- How effective are the feature sets in each setting?
- • Significance testing: McNemar's test with Yates' correction of continuity, p < 0.01

Related work	Data	Method	Experiments	Conclusions

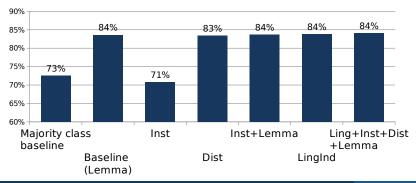
SEEN verbs: labeled training data for verb type available

- Asp-MASC, Random Forest classifier, 10-fold cross validation, distributing instances of verb types over folds
- Lemma = lemma of main verb used as additional feature
- Baseline (Lemma) memorizes most frequent class of verb type in training folds

Related work	Data	Method	Experiments	Conclusions

SEEN verbs: labeled training data for verb type available

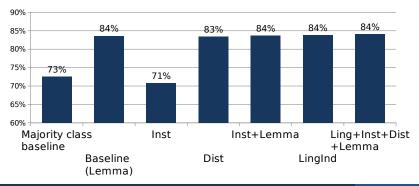
- Asp-MASC, Random Forest classifier, 10-fold cross validation, distributing instances of verb types over folds
- Lemma = lemma of main verb used as additional feature
- Baseline (Lemma) memorizes most frequent class of verb type in training folds



SEEN verbs: labeled training data for verb type available

SEEN verb types: findings

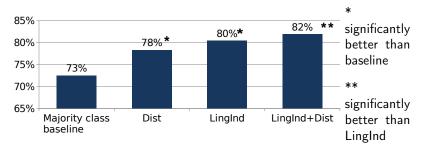
All type-based features result in the same performance as using the most frequent class of the type in the training data (no significant improvements).



Introduction F	Related work	Data	Method	Experiments	Conclusions

UNSEEN verbs: no labeled training data available

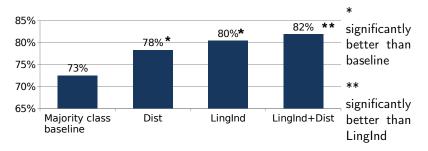
- Logistic regression, Asp-MASC, 10-fold cross validation: all occurrences of a verb type in the same fold
- Baseline: most frequent class (DYNAMIC)



	Related work	Data	Method	Experiments	Conclusions

UNSEEN verbs: no labeled training data available

- Logistic regression, Asp-MASC, 10-fold cross validation: all occurrences of a verb type in the same fold
- Baseline: most frequent class (DYNAMIC)



UNSEEN verb types: findings

LingInd + Dist features generalize across verb types. Combination works best.

Related work	Data	Method	Experiments	Conclusions

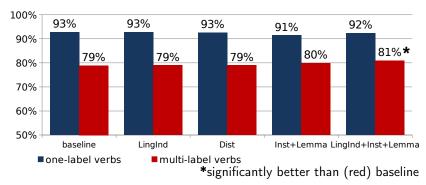
ONE-LABEL vs. MULTI-LABEL verbs

- one-label verbs: all instances in Asp-MASC have the same label (1966 instances, 806 verb types)
- multi-label verbs: instances have differing labels (4195 instances, 264 verb types)
- 'seen' setting: Random Forest, 10-fold cross validation

Related work	Data	Method	Experiments	Conclusions

ONE-LABEL vs. MULTI-LABEL verbs

- one-label verbs: all instances in Asp-MASC have the same label (1966 instances, 806 verb types)
- multi-label verbs: instances have differing labels (4195 instances, 264 verb types)
- 'seen' setting: Random Forest, 10-fold cross validation



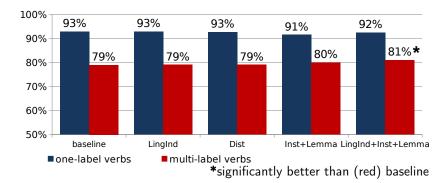
Introduction

Data

Method

ONE-LABEL vs. MULTI-LABEL verbs: Accuracy

MULTI-LABEL verb types: findings



Related work	Data	Method	Experiments	Conclusions

Instance-based classification: Asp-Ambig data set

- 20 frequent verbs that can occur as either stative or dynamic (selected from LCS list of 'mixed' verb types)
- for each: 138 sentences randomly extracted from Brown corpus
- two annotators mark the aspectual class of the verb in question (highlighted)

Related work	Data	Method	Experiments	Conclusions

Instance-based classification: Asp-Ambig data set

- 20 frequent verbs that can occur as either stative or dynamic (selected from LCS list of 'mixed' verb types)
- for each: 138 sentences randomly extracted from Brown corpus
- two annotators mark the aspectual class of the verb in question (highlighted)
- 2667 instances, κ = 0.6 (Asp-MASC κ = 0.7) 1444 DYNAMIC, 697 STATIVE, 526 BOTH

Related work	Data	Method	Experiments	Conclusions

Instance-based classification

- Asp-Ambig (20 verbs, pprox 138 instances each)
- Random Forest, Leave-One-Out cross validation

Features	Micro-avg. accuracy
majority class baseline	66.3%
type-based features	
Inst	58.1%
Inst+Lemma	71.0%
Inst+Lemma+LingInd+Dist	72.0%

Related work	Data	Method	Experiments	Conclusions

Instance-based classification

- Asp-Ambig (20 verbs, pprox 138 instances each)
- Random Forest, Leave-One-Out cross validation

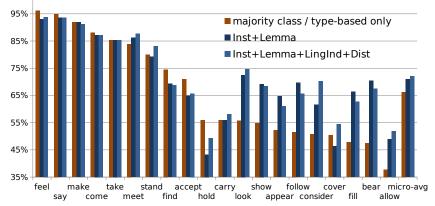
Features	Micro-avg. accuracy
majority class baseline	66.3%
type-based features	
Inst	58.1%
Inst+Lemma	71.0%
Inst+Lemma+LingInd+Dist	72.0%

INSTANCE-BASED classification: findings

Inst features do not generalize across verb types. Only useful as a feature in combination with the verb type.

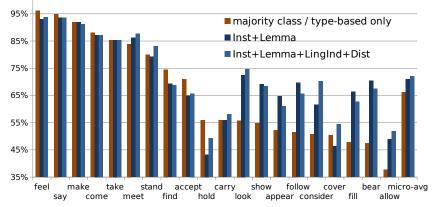
Related work	Data	Method	Experiments	Conclusions

Instance-based classification: Accuracy



Related work	Data	Method	Experiments	Conclusions

Instance-based classification: Accuracy



INSTANCE-BASED classification: findings

The more 'ambiguous' the verb type, the more essential are instance-based features. Type-based features (bias) helpful? \rightarrow depends on the verb type

Automatic prediction of aspectual class of verbs in context

	Related work	Data	Method	Experiments	Conclusions
Summary	/				

- **context-aware** approach to automatically predicting aspectual class, new set of distributional features
- two new corpora: Asp-MASC & Asp-Ambig

	Related work	Data	Method	Experiments	Conclusions
Summary	/				

- **context-aware** approach to automatically predicting aspectual class, new set of distributional features
- two new corpora: Asp-MASC & Asp-Ambig
- labeled training data available → improvement over most-frequent-class baseline can only be reached by integrating instance-based features

	Related work	Data	Method	Experiments	Conclusions
Summarv	/				

- **context-aware** approach to automatically predicting aspectual class, new set of distributional features
- two new corpora: Asp-MASC & Asp-Ambig
- labeled training data available → improvement over most-frequent-class baseline can only be reached by integrating instance-based features
- **type-based features** can provide useful prior & are useful to predict predominant aspectual class for 'unseen' verb types

	Related work	Data	Method	Experiments	Conclusions
Summarv	/				

- **context-aware** approach to automatically predicting aspectual class, new set of distributional features
- two new corpora: Asp-MASC & Asp-Ambig
- labeled training data available → improvement over most-frequent-class baseline can only be reached by integrating instance-based features
- **type-based features** can provide useful prior & are useful to predict predominant aspectual class for 'unseen' verb types

Future work

- a globally well-performing system: multi-stage approach, treating verbs differently according to whether the verb's aspectual class distribution is highly skewed
- gather more data & apply more features

Related work	Data	Method	Experiments	Conclusions

Thanks to:

Ambika Kirkland & Ruth Kühn

Omri Abend, Mike Lewis, Annie Louis, Manfred Pinkal, Mark Steedman, Stefan Thater, Bonnie Webber

	Related work	Data	Method	Experiments	Conclusions
Reference	es I				

Emmon Bach. 1986. The algebra of events. Linguistics and philosophy, 9(1):5–16.

Beata Beigman Klebanov, Eyal Beigman, and Daniel Diermeier. 2008. Analyzing disagreements. In Procceedings of the Workshop on Human Judgements in Computational Linguistics, pages 2–7. Association for Computational Linguistics.

Steven Bethard. 2013. ClearTK-TimeML: A minimalist approach to TempEval 2013. In Second Joint Conference on Lexical and Computational Semantics (* SEM), volume 2, pages 10–14.

Leo Breiman. 2001. Random forests. Machine Learning, 45(1):5–32.

Nathanael Chambers. 2013. Navytime: Event and time ordering from raw text. In Second Joint Con- ference on Lexical and Computational Semantics (*SEM), volume 2, pages 73–77.

Francisco Costa and Antonio Branco. 2012. Aspectual type and temporal

	Related work	Data	Method	Experiments	Conclusions
Reference	es II				

relation classification. In Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pages 266–275. Association for Computational Linguistics.

Bonnie J. Dorr and Mari Broman Olsen. 1997. Deriving verbal and compositional lexical aspect for NLP applications. In Proceedings of the eighth conference on European chapter of the Association for Computational Linguistics, pages 151–158. Association for Computational Linguistics.

Bonnie J. Dorr. 2001. LCS verb database. Online software database of Lexical Conceptual Structures, University of Maryland, College Park, MD.

Nancy Ide, Christiane Fellbaum, Collin Baker, and Rebecca Passonneau. 2010. The manually annotated sub-corpus: a community resource for and

	Related work	Data	Method	Experiments	Conclusions
Reference	es III				

by the people. In Proceedings of the ACL 2010 Conference Short Papers, pages 68–73. Association for Computational Linguistics.

Graham Katz. 2003. On the stativity of the English perfect. Perfect explorations, pages 205–234.

Judith L. Klavans and Martin Chodorow. 1992. Degrees of stativity: the lexical representation of verb aspect. In Proceedings of the 14th conference on Computational Linguistics, pages 1126–1131. Association for Computational Linguistics.

Sharid Loaiciga, Thomas Meyer, and Andrei Popescu-Belis. 2014. English-French Verb Phrase Alignment in Europarl for Tense Translation

	Related work	Data	Method	Experiments	Conclusions
Reference	es IV				

Modeling. In Language Resources and Evaluation Conference (LREC), Reykjavik, Iceland.

Marc Moens and Mark J. Steedman. 1988. Temporal ontology and temporal reference. Computational Linguistics, 14(2):15–28.

Eric V. Siegel. 1998a. Disambiguating verbs with the WordNet category of the direct object. In Proceedings of Workshop on Usage of WordNet in Natural Language Processing Systems, Universite de Montreal. Eric V. Siegel and Kathleen R. McKeown. 2000. Learning methods to combine linguistic indicators: Improving aspectual classification and revealing linguistic insights. Computational Linguistics, 26(4):595–628.

Radu Soricut and Daniel Marcu. 2003. Sentence level discourse parsing using syntactic and lexical information. In Proceedings of the 2003 Conference of the North American Chapter of the Association for

	Related work	Data	Method	Experiments	Conclusions
Reference	es V				

Computational Linguistics on Human Language Technology-Volume 1, pages 149–156. Association for Computational Linguistics.

Stefan Thater, Hagen Fürstenau, and Manfred Pinkal. 2011. Word meaning in context: A simple and effective vector model. In IJCNLP, pages 1134–1143.

Zeno Vendler, 1957. Linguistics in Philosophy, chapter Verbs and Times, pages 97–121. Cornell University Press, Ithaca, New York.

Related work	Data	Method	Experiments	Conclusions

Backup Slides

Related work	Data	Method	Experiments	Conclusions

SEEN verbs: labeled training data for verb type available

- Asp-MASC, Random Forest classifier, 10-fold cross validation, distributing instances of verb types over folds
- Lemma = lemma of main verb used as additional feature

Features	Accuracy (%)	
Majority class baseline (DYNAMIC)	72.5	
Baseline (Lemma) *	83.6	
LingInd	83.8	
Inst	70.8	
Inst+Lemma	83.7	
Dist	83.4	
LingInd+Inst+Dist+Lemma	84.1	

*memorizes most frequent class of verb type in training folds

SEEN verb types: findings

All type-based features result in the same performance as using the most frequent class of the type in the training data (no significant

Automatic prediction of aspectual class of verbs in context

	Related work	Data	Method	Experiments	Conclusions

Instance-based classification

- Asp-Ambig, Random Forest, Leave-One-Out cross validation
- using Inst features alone: acc. 58.1%

Verb	# of inst.	Majority Class		Inst +Lemma	Inst +Lemma +LingInd +Dist
feel	128	96.1	stat	93.0	93.8
say	138	94.9	dyn	93.5	93.5
make	136	91.9	dyn	91.9	91.2
come	133	88.0	dyn	87.2	87.2
take	137	85.4	dyn	85.4	85.4
meet	130	83.9	dyn	86.2	87.7
stand	130	80.0	stat	79.2	83.1
find	137	74.5	dyn	69.3	68.8
accept	134	70.9	dyn	64.9	65.7
hold	134	56.0	both	43.3	49.3
carry	136	55.9	dyn	55.9	58.1
look	138	55.8	dyn	72.5	74.6
show	133	54.9	dyn	69.2	68.4
appear	136	52.2	stat	64.7	61.0
follow	122	51.6	both	69.7	65.6
consider	138	50.7	dyn	61.6	70.3
cover	123	50.4	stat	46.3	54.5
fill	134	47.8	dyn	66.4	62.7
bear	135	47.4	dyn	70.4	67.4
allow	135	37.8	dyn	48.9	51.9
micro-avg.	2667	66.3		71.0*	72.0*

	Related work	Data	Method	Experiments	Conclusions

Asp-Ambig: confusion matrix

		Annotator 2			
		DYNAMIC	STATIVE	вотн	
or 1	DYNAMIC	1444	201	54	
Annotator	STATIVE	168	697	20	
Anr	ВОТН	44	31	8	

Related work	Data	Method	Experiments	Conclusions

UNSEEN verbs: no labeled training data available

- Logistic regression, Asp-MASC, 10-fold cross validation: all occurrences of a verb type in the same fold
- Baseline: most frequent class (DYNAMIC)

	Features	Accuracy (%)
1	Baseline	72.5
2	Dist	78.3*
3	LingInd	80.4*
4	LingInd+Dist	81.9* †

UNSEEN verb types: findings

LingInd + Dist features generalize across verb types. Combination works best.

Introduction

Data

Method

ONE-LABEL vs. MULTI-LABEL verbs

Data	Features	Acc. (%)
one-label	Baseline	92.8
verbs	LingInd	92.8
	Dist	92.6
(1966 inst.)	Inst+Lemma	91.4*
	LingInd+Inst+Lemma	92.4
multi-label	Baseline	78.9
verbs	LingInd	79.0
	Dist	79.0
(4195 inst.)	Inst	67.4*
	Inst+Lemma	79.9
	LingInd+Inst+Lemma	80.9*
	LingInd+Inst+Lemma+Dist	80.2*

MULTI-LABEL verb types: findings

Type-based features always select predominant class.

Automatic prediction of aspectual class of verbs in context

Introduction

Method

ONE-LABEL vs. MULTI-LABEL verbs

Class	Acc.(%)	Р	R	F			
Baseline (Lemma)							
micro-avg.	78.9	0.75	0.79	0.76			
LingInd+Inst+Lemma							
DYNAMIC		0.84	0.95	0.89			
STATIVE		0.76	0.69	0.72			
вотн		0.51	0.24	0.33			
micro-avg.	80.9*	0.78	0.81	0.79			

Table: **Experiment 3**: 'multi-label', precision, recall and F-measure, detailed class statistics for the best-performing system from Table

MULTI-LABEL verb types: findings

Significant gains of 2% in accuracy and 3% in F-measure (absolute). 'Difficulty': DYNAMIC< STATIVE< BOTH

Automatic prediction of aspectual class of verbs in context