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Motivation: coreference resolution

particular
book

kind

generics

Once or twice she had
peeped into the book her
sister was reading, but it
had no pictures or con-
versations in it, “and what
is the use of a book,”
thought Alice “without
pictures or conversations?”

Lewis Carroll:
“Alice in Wonderland”

[Nedoluzhko, 2013]
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The ship moved.

The ship was moving.

The ship was in motion.

event
ongoing event / process
state

3

aka aktionsart
[Vendler, 1957]
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particular events,
properties of individuals

vs.
generic knowledge

[Van Durme, 2009]
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Why model these phenomena?

natural
language

understanding

information
extraction

coreference
resolution

temporal
relation
extraction identify

discourse
modes

machine
translation

linguistic property of text passages [Smith, 2003]
Narrative mode has many States / Events
Information mode has many Generic Sentences
…
→ temporal discourse understanding
→ argumentation mining, summarization, ...
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Overview of thesis work

linguistic background / annotation scheme

corpus creation / analysis of agreement

computational modeling

lexical aspect
state vs. event

[Friedrich & Palmer, ACL 2014]

habituals
generalization
over situations

[Friedrich & Pinkal, EMNLP 2015]

generics
reference to kinds

[Friedrich & Pinkal, ACL 2015]
[Friedrich et al., LAW 2015]

situation entity types [Smith, 2003]
[Friedrich et al., ACL 2016], [Friedrich & Palmer, LAW 2014],
[Mavridou et al., LSDSem 2015], [Palmer & Friedrich, 2014]
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Linguistic background Corpus annotation Computational modeling ,

Situation entity types [Smith, 2003] [Palmer et al., 2007]

State Julie likes Cooper.

Julie did not kill the mouse.

Event Julie met Cooper two years ago.

Report ..., said the zookeeper.

Generic Sentence Owls are nocturnal animals.

Generalizing Julie often teases Cooper.
Sentence

Imperative Catch the mouse!

Question Why are there owls on your slides?

coercion to State:
negation, modality, future,
perfect, conditionality

lexical aspect:
dynamic or stative?

Does something happen
repeatedly?

episodic or habitual?

About kind/class or particular referent?
generic or non-generic?

8
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Annotation scheme

[Friedrich and Palmer, 2014] [Friedrich et al., 2015]

main referent

lexical aspect lexical aspect

non-generic generic

habitual habitual habitual

dynamic stative dynamic

Event State Generalizing
Sentence

Generic
Sentence

no (episodic) yes no (static)

dynamic

no (episodic) yes

stative

Mike cycled to work.

non-generic

dynamic

no (episodic)

Mike cycles to work.

non-generic

dynamic

yes

The bicycle was invented in the 19th century.

generic

dynamic

no (episodic)

coercion: negation, modals, conditional, perfect, future
The bicycle had not yet been invented in the 18th century.

generic

dynamic

no (episodic)

9
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Data and annotation procedure

MASC
31,596 clauses
news, letters,
fiction, journal,

technical, travel, ...

Wikipedia
10,355 clauses
animals, science,
sports, ethnic
groups, ...

manual annotation
training phase + written manual

Clause segmentation
SPADE [Soricut and Marcu, 2003]

+ heuristics

gold standard
majority vote over labels

of 3 annotators
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Inter-annotator agreement

Fleiss’ κ:
how much agreement
beyond chance?

Annotation layer MASC Wiki
lexical aspect stative 0.69 0.64

dynamic
both

main referent generic 0.69 0.65
non-generic
cannot decide

habituality episodic 0.55 0.67
habitual
static
cannot decide

11
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Fleiss’ κ [Krippendorff, 1980]

State 0.67

Event 0.74
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Event:
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Overview of thesis work

linguistic background / annotation scheme

corpus creation / analysis of agreement

computational modeling

lexical aspect
state vs. event

[Friedrich & Palmer, ACL 2014]

habituals
generalization
over situations

[Friedrich & Pinkal, EMNLP 2015]

generics
reference to kinds

[Friedrich & Pinkal, ACL 2015]
[Friedrich et al., LAW 2015]

situation entity types [Smith, 2003]
[Friedrich et al., ACL 2016], [Friedrich & Palmer, LAW 2014],
[Mavridou et al., LSDSem 2015], [Palmer & Friedrich, 2014]



Linguistic background Corpus annotation Computational modeling ,

Related work in computational linguistics

• modeling of aspectual classes

• Vendler classes [Vendler, 1957]:
Italian [Zarcone and Lenci, 2008], German [Hermes et al., 2015]

• stative vs. dynamic [Siegel and McKeown, 2000]
• completedness [Siegel and McKeown, 2000] [Loáiciga and Grisot, 2016]

• functions of tense [Reichart and Rappoport, 2010] [Zhang and Xue, 2014]
• (episodic/future/...) event, habitual, state, general facts, ...

• modeling genericity
• identifying genericity of NPs / reference to kinds [Reiter and Frank, 2010]
• recognizing habituals [Mathew and Katz, 2009]

• labeling situation entities [Palmer et al., 2007]
• data set: 20 texts / 4391 clauses from Brown corpus
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Linguistic background Corpus annotation Computational modeling ,

Discourse-sensitive identification of generic expressions

subject non-generic or generic? [Friedrich & Pinkal, ACL 2015]

The bike is blue. The bike was invented in the 19th century.

non-generic generic

form of NP not sufficient
for classification

discourse context matters

14

Mike keeps fixing his bicycle.

non-generic

Bicycles were introduced in the 19th
century in Europe.

generic[Reiter and Frank, 2010]
{

The bicycle has undergone continual
adaptation and improvement.
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Discourse-sensitive identification of generic expressions

Generic Generic Non-Generic

y⃗

x⃗
Bicycles were
introduced ...

barePlural = T
simplePast = T
...

The bicycle has
undergone ...

barePlural = F
perfect = T
...

These innovations
have continued ...

barePlural = F
countable = Y
...

syntactic-
semantic
features

15

maximum entropy
model (MaxEnt)

P(y|x)

linear chain conditional
random field (CRF)

P(⃗y|⃗x)
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Syntactic-semantic features

Implementation based on dkpro [Eckart de Castilho and Gurevych, 2014]
and Stanford CoreNLP [Manning et al., 2014]

The bicycle has undergone continual adaptation and improvement.

• main verb:
• tense, voice, progressive, perfect, lemma, WordNet hypernyms, ...

• main referent (subject):
• lemma, determiner type, noun type, number, person, countability,
WordNet senses, ...

• clause:
• adverbs, conditional, modal, negated, ...

Publicly available:
https://github.com/annefried/sitent
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Discourse-sensitive identification of generic expressions

subject non-generic or generic?

Wikipedia
10,355 clauses

document-wise cross validation

majority class

Naive Bayes (RF)
MaxEnt

CRF
CRF (oracle)

56.1
71.7
76.4
79.1
83

Accuracy %

Further findings
• best results on ACE-2 and
ACE-2005 data sets

• features describing clause
more important than
NP-based features

• identification of Events
related to kinds
Bikes have two wheels. (Generic)
The bike was invented in the
19th century. (Event)

• sequence model often yields
improvements when
coreference information
would be useful

17
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improvements when
coreference information
would be useful 17



Overview of thesis work

linguistic background / annotation scheme

corpus creation / analysis of agreement

computational modeling

lexical aspect
state vs. event

[Friedrich & Palmer, ACL 2014]

habituals
generalization
over situations

[Friedrich & Pinkal, EMNLP 2015]

generics
reference to kinds

[Friedrich & Pinkal, ACL 2015]
[Friedrich et al., LAW 2015]

situation entity types [Smith, 2003]
[Friedrich et al., ACL 2016], [Friedrich & Palmer, LAW 2014],
[Mavridou et al., LSDSem 2015], [Palmer & Friedrich, 2014]



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

[Smith, 2003] [Palmer et al., 2007]

State Julie likes Cooper.
Julie did not kill the mouse.

Event Julie met Cooper two years ago.

Report ..., said the zookeeper.

Generic Sentence Owls are nocturnal animals.

Generalizing Julie often teases Cooper.
Sentence

Imperative Catch the mouse!

Question Why are there owls on your slides?

18



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

4391 clauses from Brown corpus [Francis and Kučera, 1979]
majority class State (35.3%), κ = 0.52 [Palmer et al., 2007]

Features: words, pos tags, linguistic cues, grammatical cues

Accuracy (%)
[Palmer et al., 2007] [Friedrich et al., 2016]
MaxEnt LB MaxEnt CRF

50.6 53.1 55.8 60.0

lookback features:
predicted labels for
previous clauses

first true sequence labeling approach
for situation entity types

19

}

Reason:
Generic Sentences
cluster together
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Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

Features for clauses:

• pos = part of speech tags
• Brown clusters
[Brown et al., 1992],
[Turian et al., 2010]:
distributional information

• syntactic-semantic features
describe main verb, main
referent (subject) and clause

7-way classification task
10-fold document-wise CV
dev set (80% of data)

CRF (sequence model)
majority class

pos

Brown clusters
syntactic-semantic

all
humans

45
58.7

70.6
72.8
76.4
79.6

Accuracy %Further findings:
#1: model trained directly on situation entity types works better

than pipelined model trained separately on the subtasks
#2: good performance across genres

out-of-genre training data helps for infrequent types

most important

findings validated on
heldout test set

20



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

Features for clauses:
• pos = part of speech tags

• Brown clusters
[Brown et al., 1992],
[Turian et al., 2010]:
distributional information

• syntactic-semantic features
describe main verb, main
referent (subject) and clause

7-way classification task
10-fold document-wise CV
dev set (80% of data)

CRF (sequence model)
majority class

pos

Brown clusters
syntactic-semantic

all
humans

45
58.7

70.6
72.8
76.4
79.6

Accuracy %Further findings:
#1: model trained directly on situation entity types works better

than pipelined model trained separately on the subtasks
#2: good performance across genres

out-of-genre training data helps for infrequent types

most important

findings validated on
heldout test set

20



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

Features for clauses:
• pos = part of speech tags
• Brown clusters
[Brown et al., 1992],
[Turian et al., 2010]:
distributional information

• syntactic-semantic features
describe main verb, main
referent (subject) and clause

7-way classification task
10-fold document-wise CV
dev set (80% of data)

CRF (sequence model)
majority class

pos

Brown clusters
syntactic-semantic

all
humans

45
58.7

70.6
72.8
76.4
79.6

Accuracy %Further findings:
#1: model trained directly on situation entity types works better

than pipelined model trained separately on the subtasks
#2: good performance across genres

out-of-genre training data helps for infrequent types

most important

findings validated on
heldout test set

20



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

Features for clauses:
• pos = part of speech tags
• Brown clusters
[Brown et al., 1992],
[Turian et al., 2010]:
distributional information

• syntactic-semantic features
describe main verb, main
referent (subject) and clause

7-way classification task
10-fold document-wise CV
dev set (80% of data)

CRF (sequence model)
majority class

pos

Brown clusters
syntactic-semantic

all
humans

45
58.7

70.6
72.8
76.4
79.6

Accuracy %Further findings:
#1: model trained directly on situation entity types works better

than pipelined model trained separately on the subtasks
#2: good performance across genres

out-of-genre training data helps for infrequent types

most important

findings validated on
heldout test set

20



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

Features for clauses:
• pos = part of speech tags
• Brown clusters
[Brown et al., 1992],
[Turian et al., 2010]:
distributional information

• syntactic-semantic features
describe main verb, main
referent (subject) and clause

7-way classification task
10-fold document-wise CV
dev set (80% of data)

CRF (sequence model)
majority class

pos

Brown clusters
syntactic-semantic

all
humans

45
58.7

70.6
72.8
76.4
79.6

Accuracy %Further findings:
#1: model trained directly on situation entity types works better

than pipelined model trained separately on the subtasks
#2: good performance across genres

out-of-genre training data helps for infrequent types

most important

findings validated on
heldout test set

20



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

Features for clauses:
• pos = part of speech tags
• Brown clusters
[Brown et al., 1992],
[Turian et al., 2010]:
distributional information

• syntactic-semantic features
describe main verb, main
referent (subject) and clause

7-way classification task
10-fold document-wise CV
dev set (80% of data)

CRF (sequence model)
majority class

pos

Brown clusters
syntactic-semantic

all
humans

45
58.7

70.6
72.8
76.4
79.6

Accuracy %

Further findings:
#1: model trained directly on situation entity types works better

than pipelined model trained separately on the subtasks
#2: good performance across genres

out-of-genre training data helps for infrequent types

most important

findings validated on
heldout test set

20



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

Features for clauses:
• pos = part of speech tags
• Brown clusters
[Brown et al., 1992],
[Turian et al., 2010]:
distributional information

• syntactic-semantic features
describe main verb, main
referent (subject) and clause

7-way classification task
10-fold document-wise CV
dev set (80% of data)

CRF (sequence model)
majority class

pos

Brown clusters
syntactic-semantic

all
humans

45
58.7

70.6
72.8
76.4
79.6

Accuracy %

Further findings:
#1: model trained directly on situation entity types works better

than pipelined model trained separately on the subtasks
#2: good performance across genres

out-of-genre training data helps for infrequent types

most important

findings validated on
heldout test set

20



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

Features for clauses:
• pos = part of speech tags
• Brown clusters
[Brown et al., 1992],
[Turian et al., 2010]:
distributional information

• syntactic-semantic features
describe main verb, main
referent (subject) and clause

7-way classification task
10-fold document-wise CV
dev set (80% of data)

CRF (sequence model)
majority class

pos

Brown clusters
syntactic-semantic

all
humans

45
58.7

70.6
72.8
76.4
79.6

Accuracy %

Further findings:
#1: model trained directly on situation entity types works better

than pipelined model trained separately on the subtasks
#2: good performance across genres

out-of-genre training data helps for infrequent types

most important

findings validated on
heldout test set

20



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

Features for clauses:
• pos = part of speech tags
• Brown clusters
[Brown et al., 1992],
[Turian et al., 2010]:
distributional information

• syntactic-semantic features
describe main verb, main
referent (subject) and clause

7-way classification task
10-fold document-wise CV
dev set (80% of data)

CRF (sequence model)
majority class

pos

Brown clusters
syntactic-semantic

all
humans

45
58.7

70.6
72.8
76.4
79.6

Accuracy %

Further findings:
#1: model trained directly on situation entity types works better

than pipelined model trained separately on the subtasks
#2: good performance across genres

out-of-genre training data helps for infrequent types

most important

findings validated on
heldout test set

20



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

Features for clauses:
• pos = part of speech tags
• Brown clusters
[Brown et al., 1992],
[Turian et al., 2010]:
distributional information

• syntactic-semantic features
describe main verb, main
referent (subject) and clause

7-way classification task
10-fold document-wise CV
dev set (80% of data)

CRF (sequence model)
majority class

pos

Brown clusters
syntactic-semantic

all
humans

45
58.7

70.6
72.8
76.4
79.6

Accuracy %

Further findings:
#1: model trained directly on situation entity types works better

than pipelined model trained separately on the subtasks
#2: good performance across genres

out-of-genre training data helps for infrequent types

most important

findings validated on
heldout test set

20



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

Features for clauses:
• pos = part of speech tags
• Brown clusters
[Brown et al., 1992],
[Turian et al., 2010]:
distributional information

• syntactic-semantic features
describe main verb, main
referent (subject) and clause

7-way classification task
10-fold document-wise CV
dev set (80% of data)

CRF (sequence model)
majority class

pos

Brown clusters
syntactic-semantic

all
humans

45
58.7

70.6
72.8
76.4
79.6

Accuracy %

Further findings:
#1: model trained directly on situation entity types works better

than pipelined model trained separately on the subtasks
#2: good performance across genres

out-of-genre training data helps for infrequent types

most important

findings validated on
heldout test set

20



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

Features for clauses:
• pos = part of speech tags
• Brown clusters
[Brown et al., 1992],
[Turian et al., 2010]:
distributional information

• syntactic-semantic features
describe main verb, main
referent (subject) and clause

7-way classification task
10-fold document-wise CV
dev set (80% of data)

CRF (sequence model)
majority class

pos

Brown clusters
syntactic-semantic

all
humans

45
58.7

70.6
72.8
76.4
79.6

Accuracy %Further findings:

#1: model trained directly on situation entity types works better
than pipelined model trained separately on the subtasks

#2: good performance across genres
out-of-genre training data helps for infrequent types

most important

findings validated on
heldout test set

20



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

Features for clauses:
• pos = part of speech tags
• Brown clusters
[Brown et al., 1992],
[Turian et al., 2010]:
distributional information

• syntactic-semantic features
describe main verb, main
referent (subject) and clause

7-way classification task
10-fold document-wise CV
dev set (80% of data)

CRF (sequence model)
majority class

pos

Brown clusters
syntactic-semantic

all
humans

45
58.7

70.6
72.8
76.4
79.6

Accuracy %Further findings:
#1: model trained directly on situation entity types works better

than pipelined model trained separately on the subtasks

#2: good performance across genres
out-of-genre training data helps for infrequent types

most important

findings validated on
heldout test set

20



Linguistic background Corpus annotation Computational modeling ,

Automatic classification of situation entity types

Features for clauses:
• pos = part of speech tags
• Brown clusters
[Brown et al., 1992],
[Turian et al., 2010]:
distributional information

• syntactic-semantic features
describe main verb, main
referent (subject) and clause

7-way classification task
10-fold document-wise CV
dev set (80% of data)

CRF (sequence model)
majority class

pos

Brown clusters
syntactic-semantic

all
humans

45
58.7

70.6
72.8
76.4
79.6

Accuracy %Further findings:
#1: model trained directly on situation entity types works better

than pipelined model trained separately on the subtasks
#2: good performance across genres

out-of-genre training data helps for infrequent types

most important

findings validated on
heldout test set

20



Overview of thesis work

linguistic background / annotation scheme

corpus creation / analysis of agreement

computational modeling

lexical aspect
state vs. event

[Friedrich & Palmer, ACL 2014]

habituals
generalization
over situations

[Friedrich & Pinkal, EMNLP 2015]

generics
reference to kinds

[Friedrich & Pinkal, ACL 2015]
[Friedrich et al., LAW 2015]

situation entity types [Smith, 2003]
[Friedrich et al., ACL 2016], [Friedrich & Palmer, LAW 2014],
[Mavridou et al., LSDSem 2015], [Palmer & Friedrich, 2014]



Linguistic background Corpus annotation Computational modeling ,

Automatic prediction of lexical aspectual class

[Friedrich & Palmer, ACL 2014]She filled the glass with water. (dynamic)
The glass is filled with water. (stative)

MASC (jokes, news, letters) • 7875 clauses

Random Forest classifier [Breiman, 2001] with features:

• linguistic indicators[Siegel and McKeown, 2000]:
tendency of verb type “fill” to occur with progressive? etc.
estimated over GigaWord [Graff et al., 2003]

• contextual features: subject of “fill” = “she”

Finding #1: linguistic indicators generalize across verb types
10-fold cross validation • verbs in test folds ∩ verbs in train fold = ∅

majority class
linguistic indicators

72.5
80.4

Accuracy %

Finding #2: contextual features help for ambiguous verb types

21
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Linguistic background Corpus annotation Computational modeling ,

Automatic recognition of habituals

John bought a bike. (episodic)

}
[Mathew and Katz, 2009]

John cycles to work. (habitual)

John likes coffee. (static)Bill can cycle. [Friedrich & Pinkal, EMNLP 2015]

Wikipedia (10,355 clauses) • Random Forest classifiers [Breiman, 2001]

Findings / contributions:
#1: recognizing habituals in free text

requires a three-way distinction
#2: contextual and verb type-based

features are complementary
#3: filtering out static clauses first

is beneficial (cascaded model)

F1

static episodic habitual
0

20

40

60

80

100
81.2

69.5

31.3

82.6
72

50.2

joint
cascaded

stative
coercion to State:

negation, modality, future,
perfect, conditionality
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Conclusion / contributions / directions for future work

• Situation entity types can be annotated with reasonable agreement
if broken down into related sub-tasks [Friedrich & Palmer, LAW 2014]

• crowdsource relevant annotations?

• Inventory of situation entity types cross-linguistically applicable,
but different implementation required [Mavridou et al., LSDSem 2015]

• English Perfect vs. German Perfekt
• lexical choice: she is startled (State) vs. sie erschrickt (Event)

• Semantic theory about generics [Krifka et al., 1995] works well in some genres
(e.g., encyclopedic), less well in others (e.g., essays) [Friedrich et al., LAW 2015]

• is there a way to annotate / model the “underspecified” cases?
Students at Saarland university eat at the mensa.

⇒ modification of situation entity types inventory?
• current set possibly too coarse-grained for many NLP applications
• distinguish among the different types of States

• John is tall vs. John is hungry vs. John can swim
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e.g., from multilingual parallel corpora?

[Friedrich and Gateva, 2017]
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[Friedrich & Palmer, ACL 2014]
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situation entity types [Smith, 2003]
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